

Getting Started
with µVision2

and the C51 Microcontroller
Development Tools

User’s Guide 02.2001

2 Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2001 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.

NOTE
This manual assumes that you are familiar with Microsoft Windows and the
hardware and instruction set of the 8051 microcontrollers.

Keil C51™ and µVision™ are trademarks of Keil Elektronik GmbH.
Microsoft®, and Windows™ are trademarks or registered trademarks of
Microsoft Corporation.
PC® is a registered trademark of International Business Machines Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started and Creating Applications 3

Preface
This manual is an introduction to the Keil Software development tools for the
8051 family of microcontrollers. It introduces new users and interested readers
to our products. This user’s guide contains the following chapters.

“Chapter 1. Introduction” gives an overview and discusses the different products
that Keil Software offers for the 8051 microcontroller families.

“Chapter 2. Installation” describes how to install the software and how to setup
the operating environment for the tools.

“Chapter 3. Development Tools” describes the major features of the µVision2
IDE with integrated debugger, the C compiler, assembler, and utilities.

“Chapter 4. Creating Applications” describes how to create projects, edit source
files, compile and fix syntax errors, and generate executable code.

“Chapter 5. Testing Programs” describes how you use the µVision2 debugger to
simulate and test your entire application.

“Chapter 6. µVision2 Debug Functions” discusses built-in, user, and signal
functions that extended the debugging capabilities of µVision2.

“Chapter 7. Sample Programs” provides several sample programs that show you
how to use the Keil 8051 development tools.

“Chapter 8. RTX-51 Real-Time Operating System” discusses RTX-51 Tiny and
RTX-51 Full and provides an example program.

“Chapter 9. Using On-chip Peripherals” shows how to access the on-chip 8051
peripherals with the C51 compiler. This chapter also includes several
Application Notes.

“Chapter 10. CPU and C Startup Code” provides information on setting up the
8051 CPU for your application.

“Chapter 11. Using Monitor-51” discusses how to initialize the monitor and
install it on your target hardware.

“Chapter 12. Command Reference” briefly describes the commands and
controls available in the Keil 8051 development tools.

4 Preface

Document Conventions
This document uses the following conventions:

Examples Description

README.TXT Bold capital text is used for the names of executable programs, data files,
source files, environment variables, and commands you enter at the
command prompt. This text usually represents commands that you must
type in literally. For example:

 CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Courier Text in this typeface is used to represent information that displays on
screen or prints at the printer.
This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For example,
projectfile in a syntax string means that you must supply the actual project
file name.
Occasionally, italics are also used to emphasize words in the text.

Elements that
repeat…

Ellipses (…) are used to indicate an item that may be repeated.

Omitted code
 :
 :

Vertical ellipses are used in source code listings to indicate that a
fragment of the program is omitted. For example:
Void main (void) {
:
:
while (1);

�Optional Items�
Double brackets indicate optional items in command lines and input fields.
For example:

C51 TEST.C PRINT �(filename)�

{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a
group of items from which one must be chosen. The braces enclose all of
the choices and the vertical bars separate the choices. One item in the list
must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

Point Move the mouse until the mouse pointer rests on the item desired.

Click Quickly press and release a mouse button while pointing at the item to be
selected.

Drag Press the left mouse button while on a selected item. Then, hold the
button down while moving the mouse. When the item to be selected is at
the desired position, release the button.

Double-Click Click the mouse button twice in rapid succession.

Getting Started and Creating Applications 5

Contents
Chapter 1. Introduction..9

Manual Topics .. 10
Changes to the Documentation ... 10
Evaluation Kits and Production Kits... 11
Types of Users .. 11
Requesting Assistance... 12
Software Development Cycle ... 13
Product Overview ... 16

Chapter 2. Installation..19
System Requirements.. 19
Installation Details .. 19
Folder Structure .. 20

Chapter 3. Development Tools...21
µVision2 Integrated Development Environment .. 21
C51 Optimizing C Cross Compiler ... 32
A51 Macro Assembler .. 49
BL51 Code Banking Linker/Locator .. 51
LIB51 Library Manager.. 54
OC51 Banked Object File Converter .. 55
OH51 Object-Hex Converter .. 55

Chapter 4. Creating Applications..57
Creating Projects... 57
Project Targets and File Groups ... 64
Overview of Configuration Dialogs.. 66
Code Banking ... 67
µVision2 Utilities.. 69
Writing Optimum Code .. 78
Tips and Tricks ... 82

Chapter 5. Testing Programs...93
µVision2 Debugger... 93
Debug Commands... 107
Expressions ... 110
Tips and Tricks ... 126

Chapter 6. µVision2 Debug Functions ..131
Creating Functions .. 131
Invoking Functions ... 133
Function Classes ... 133
Differences Between Debug Functions and C... 147
Differences Between dScope and the µVision2 Debugger 148

6 Contents

Chapter 7. Sample Programs...149
HELLO: Your First 8051 C Program...150
MEASURE: A Remote Measurement System ...155

Chapter 8. RTX-51 Real-Time Operating System.......................................169
Introduction...169
RTX51 Technical Data ...173
Overview of RTX51 Routines...174
TRAFFIC: RTX-51 Tiny Example Program..176
RTX Kernel Aware Debugging...180

Chapter 9. Using On-chip Peripherals..183
Special Function Registers ..183
Register Banks ..184
Interrupt Service Routines...185
Interrupt Enable Registers...187
Parallel Port I/O ..187
Timers/Counters..189
Serial Interface ..190
Watchdog Timer ...193
D/A Converter...194
A/D Converter...195
Power Reduction Modes ...196

Chapter 10. CPU and C Startup Code ..197
Chapter 11. Using Monitor-51 ...199

Caveats..199
Hardware and Software Requirements ..200
Serial Transmission Line...201
µVision2 Monitor Driver ..201
µVision2 Restrictions when using Monitor-51 ...202
Tool Configuration when Using Monitor-51...204
Monitor-51 Configuration...206
Troubleshooting ..208
Debugging with Monitor-51..209

Chapter 12. Command Reference ...211
µVision 2 Command Line Invocation ...211
A51 / A251 Macro Assembler Directives ...212
C51/C251 Compiler ..213
L51/BL51 Linker/Locator ...215
L251 Linker/Locator ...216
LIB51 / L251 Library Manager Commands..218
OC51 Banked Object File Converter ..219
OH51 Object-Hex Converter ..219
OH251 Object-Hex Converter ..219

Getting Started and Creating Applications 7

Index..222

Getting Started and Creating Applications 9

 1

Chapter 1. Introduction
Thank you for allowing Keil Software to provide you with software development
tools for the 8051 family of microprocessors. With the Keil tools, you can
generate embedded applications for virtually every 8051 derivative.

NOTE
Throughout this manual we refer to these tools as the 8051 development tools.
However, they support all derivatives and variants of the 8051 microcontroller
family.

The Keil Software 8051 development tools listed below are programs you use to
compile your C code, assemble your assembly source files, link and locate object
modules and libraries, create HEX files, and debug your target program. Each of
these programs is described in more detail in “Chapter 3. Development Tools”
which begins on page 21.

� µVision2 for Windows™ is an Integrated Development Environment that
combines project management, source code editing, and program debugging
in one single, powerful environment.

� The C51 ANSI Optimizing C Cross Compiler creates relocatable object
modules from your C source code.

� The A51 Macro Assembler creates relocatable object modules from your
8051 assembly source code.

� The BL51 Linker/Locator combines relocatable object modules created by
the C51 Compiler and the A51 Assembler into absolute object modules.

� The LIB51 Library Manager combines object modules into libraries that may
be used by the linker.

� The OH51 Object-HEX Converter creates Intel HEX files from absolute
object modules.

� The RTX-51 Real-time Operating System simplifies the design of complex,
time-critical software projects.

The tools are combined into the kits described in “Product Overview” on page
16. They are designed for the professional software developer, but any level of
programmer can use them to get the most out of the 8051 microcontroller
architecture.

10 Chapter 1. Introduction

1

Manual Topics
This manual discusses a number of topics including:

� How to select the best tool kit for your application (see “Product Overview”
on page 16),

� How to install the software on your system (see “Chapter 2. Installation” on
page 19),

� The features of the 8051 development tools (see “Chapter 3. Development
Tools” on page 21),

� How to create complete applications using the µVision2 IDE (see “Chapter 4.
Creating Applications” on page 57),

� How to debug programs and simulate target hardware with the µVision2
debugger (see “Chapter 5. Testing Programs” on page 93),

� How to access the on-chip peripherals and special features of the 8051
variants using the C51 Compiler (see “On-chip Peripheral Symbols” on page
114),

� How to run the sample programs (see “Chapter 7. Sample Programs” on page
149).

NOTE
To get started immediately, install the software (refer to “Chapter 2.
Installation” on page 19) and run the sample programs (refer to “Chapter 7.
Sample Programs” on page 149).

Changes to the Documentation
Last minute changes and corrections to the software and manuals are listed in the
RELEASE.TXT files. These files are located in the \KEIL\UV2 and
\KEIL\C51\HLP folders. Take the time to read these files to determine if there
are changes that may impact your installation.

Getting Started and Creating Applications 11

 1

Evaluation Kits and Production Kits
Keil Software delivers software in two types of kits: evaluation kits and
production kits.

Evaluation Kits include evaluation versions of our 8051 tools along with this
user’s guide. The tools in the evaluation kit let you generate applications up to
2 Kbytes in size. This kit allows you to evaluate the effectiveness of our
8051 tools and generate small target applications.

Production Kits (discussed in “Product Overview” on page 16) include the
unlimited versions of our 8051 tools along with a full manual set (including this
user’s guide). The production kits include 1 year of free technical support and
product updates. Updates are available at www.keil.com.

Types of Users
This manual addresses three types of users: evaluation users, new users, and
experienced users.

Evaluation Users are those users who have not yet purchased the software but
have requested the evaluation package to get a better feel for what the tools do
and how they perform. The evaluation package includes tools that are limited to
2 Kbytes along with several sample programs that provide applications created
for the 8051 microcontroller family. Even if you are only an evaluation user,
take the time to read this manual. It explains how to install the software,
provides you with an overview of the development tools, and introduces the
sample programs.

New Users are those users who are purchasing 8051 development tools for the
first time. The included software provides you with the latest development tool
technology, manuals, and sample programs. If you are new to the 8051 or the
tools, take the time to review the sample programs described in this manual.
They provide a quick tutorial and help new or inexperienced users get started
quickly.

Experienced Users are those users who have previously used the Keil 8051
development tools and are now upgrading to the latest version. The software
included with a product upgrade contains the latest development tools and
sample programs.

12 Chapter 1. Introduction

1

Requesting Assistance
At Keil Software, we are dedicated to providing you with the best embedded
development tools and documentation available. If you have suggestions or
comments regarding any of the printed manuals accompanying this product,
please contact us. If you think you have discovered a problem with the software,
do the following before calling technical support.

1. Read the sections in this manual that pertains to the job or task you are trying
to accomplish.

2. Make sure you are using the most current version of the software and utilities.
Check the update section at www.keil.com to make sure that you have the
latest software version.

3. Isolate the problem to determine if it is a problem with the assembler,
compiler, linker, library manager, or another development tool.

4. Further isolate software problems by reducing your code to a few lines.

If you are still experiencing problems after following these steps, report them to
our technical support group. Please include your product serial number and
version number. We prefer that you send the problem via email. If you contact
us by fax, be sure to include your name and telephone numbers (voice and fax)
where we can reach you.

Try to be as detailed as possible when describing the problem you are having.
The more descriptive your example, the faster we can find a solution. If you
have a single-page code example demonstrating the problem, please email it to
us. If possible, make sure that your problem can be duplicated with the µVision2
simulator. Please try to avoid sending complete applications or long listings as
this slows down our response to you.

NOTE
You can always get technical support, product updates, application notes, and
sample programs from www.keil.com/support.

Getting Started and Creating Applications 13

 1

Software Development Cycle
When you use the Keil Software tools, the project development cycle is roughly
the same as it is for any other software
development project.

1. Create a project, select the target
chip from the device database, and
configure the tool settings.

2. Create source files in C or
assembly.

3. Build your application with the
project manager.

4. Correct errors in source files.

5. Test the linked application.

A block diagram of the complete 8051
tool set may best illustrate the
development cycle. Each component
is described below.

µVision2 IDE
The µVision2 IDE combines project mana
interactive error correction, option setup,

Use µVision2 to create your source files a
defines your target application. µVision2
and links your embedded application and
development efforts.

gement, a rich-featured editor with
make facility, and on-line help.

nd organize them into a project that
 automatically compiles, assembles,
provides a single focal point for your

µVision2 IDE with Editor & Make

ANSI C
Standard
Library

RTX51
Real-Time
Operating

System

LIB51
Library

Manager

BL51 Linker/Locater

C51
ANSI C Compiler

A51
Macro Assembler

high-speed
CPU/Peripheral

Simulation
Monitor-51

Target Debugger

µVision2 Debugger
Emulator &

PROM Programmer

Advanced GDI
interface for
Emulators &

Target Debuggers

14 Chapter 1. Introduction

1

C51 Compiler & A51 Assembler
Source files are created by the µVision2 IDE and are passed to the C51 Compiler
or A51 assembler. The compiler and assembler process source files and create
relocatable object files.

The Keil C51 Compiler is a full ANSI implementation of the C programming
language that supports all standard features of the C language. In addition,
numerous features for direct support of the 8051 architecture have been added.

The Keil A51 macro assembler supports the complete instruction set of the 8051
and all derivatives.

LIB51 Library Manager
The LIB51 library manager allows you to create object library from the object
files created by the compiler and assembler. Libraries are specially formatted,
ordered program collections of object modules that may be used by the linker at
a later time. When the linker processes a library, only those object modules in
the library that are necessary to create the program are used.

BL51 Linker/Locator
The BL51 linker creates an absolute object module using the object modules
extracted from libraries and those created by the compiler and assembler. An
absolute object file or module contains no relocatable code or data. All code and
data reside at fixed memory locations. The absolute object file may be used:

� To program an EPROM or other memory devices,
� With the µVision2 Debugger for simulation and target debugging,
� With an in-circuit emulator for the program testing.

Getting Started and Creating Applications 15

 1

µVision2 Debugger
The µVision2 symbolic, source-level debugger is ideally suited for fast, reliable
program debugging. The debugger includes a high-speed simulator that let you
simulate an entire 8051 system including on-chip peripherals and external
hardware. The attributes of the chip you use are automatically configured when
you select the device from the Device Database.

The µVision2 Debugger provides several ways for you to test your programs on
real target hardware.

� Install the MON51 Target Monitor on your target system and download your
program using the Monitor-51 interface built-in to the µVision2 Debugger.

� Use the Advanced GDI interface to attach use the µVision2 Debugger front
end with your target system.

Monitor-51
The µVision2 Debugger supports target debugging using Monitor-51. The
monitor program resides in the memory of your target hardware and
communicates with the µVision2 Debugger using the serial port of the 8051 and
a COM port of your PC. With Monitor-51, µVision2 lets you perform
source-level, symbolic debugging on your target hardware.

RTX51 Real-Time Operating System
The RTX51 real-time operating system is a multitasking kernel for the 8051
microcontroller family. The RTX51 real-time kernel simplifies the system
design, programming, and debugging of complex applications where fast
reaction to time critical events is essential. The kernel is fully integrated into the
C51 Compiler and is easy to use. Task description tables and operating system
consistency are automatically controlled by the BL51 linker/locator.

16 Chapter 1. Introduction

1

Product Overview
Keil Software provides the premier development tools for the 8051 family of
microcontrollers. We bundle our software development tools into different
packages or tool kits. The “Comparison Chart” on page 17 shows the full extent
of the Keil Software 8051 development tools. Each kit and its contents are
described below.

PK51 Professional Developer’s Kit
The PK51 Professional Developer’s Kit includes everything the professional
developer needs to create and debug sophisticated embedded applications for the
8051 family of microcontrollers. The professional developer’s kit can be
configured for all 8051 derivatives.

DK51 Developer’s Kit
The DK51 Developer’s Kit is a reduced version of PK51 and does not include
the RTX51 Tiny real-time operating system. The developer’s kit can be
configured for all 8051 derivatives.

CA51 Compiler Kit
The CA51 Compiler Kit is the best choice for developers who need a C compiler
but not a debugging system. The CA51 package contains only the µVision2
IDE. The µVision2 Debugger features are not available in CA51. The kit
includes everything you need to create embedded applications and can be
configured for all 8051 derivatives.

Getting Started and Creating Applications 17

 1

A51 Assembler Kit
The A51 Assembler Kit includes an assembler and all the utilities you need to
create embedded applications. It can be configured for all 8051 derivatives.

RTX51 Real-Time Operating System (FR51)
The RTX51 Real-Time Operating Systems is a real-time kernel for the 8051
family of microcontrollers. RTX51 Full provides a superset of the features
found in RTX51 Tiny and includes CAN communication protocol interface
routines.

Comparison Chart
The following table provides a checklist of the features found in each package.
Tools are listed along the top and part numbers for specific kits are listed along
the side. Use this cross-reference to select the kit that best suits your needs.

Components PK51 DK51† CA51 A51 FR51

µVision2 Project Management & Editor � � � �

A51 Assembler � � � �

C51 Compiler � � �

BL51 Linker/Locator � � � �

LIB51 Library Manager � � � �

µVision2 Debugger/Simulator � �

RTX51 Tiny �

RTX51 Full �

18 Chapter 1. Introduction

1

Getting Started and Creating Applications 19

 2

Chapter 2. Installation
This chapter explains how to setup an operating environment and how to install
the software on your hard disk. Before starting the installation program:

� Verify that your computer system meets the minimum requirements,
� Make a copy of the installation diskette for backup purposes.

System Requirements
There are minimum hardware and software requirements that must be satisfied to
ensure that the compiler and utilities function properly. You must have:

� PC with Pentium, Pentium-II or compatible processor,
� Windows 95, Windows-98, Windows NT 4.0, or higher,
� 16 MB RAM minimum,
� 20 MB free disk space.

Installation Details
All Keil products come with an installation program that allows easy installation.
To install the 8051 development tools:

� Insert the Keil Development Tools CD-ROM,
� Select Install Software from the CD Viewer menu,
� Follow the instructions displayed by the setup program.

NOTE
Your PC should automatically launch the CD Viewer when you insert the CD. If
not, run \KEIL\SETUP\SETUP.EXE from the CD to install the software.

20 Chapter 2. Installation

2

Folder Structure
The setup program copies the development tools into sub-folders of the base
folder. The default base folder is: C:\KEIL. The following table lists the
structure of a complete installation that includes the entire line of 8051
development tools. Your installation may vary depending on the products you
purchased.

Folder Description

C:\KEIL\C51\ASM Assembler SFR definition files and template source file.

C:\KEIL\C51\BIN Executable files of the 8051 tool chain.

C:\KEIL\C51\EXAMPLES Sample applications.

C:\KEIL\C51\RTX51 RTX51 Full files.

C:\KEIL\C51\RTX_TINY RTX51 Tiny files.

C:\KEIL\C51\INC C compiler include files.

C:\KEIL\C51\LIB C compiler library files, startup code, and source of I/O routines.

C:\KEIL\C51\MONITOR Target Monitor files and Monitor configuration for user hardware.

C:\KEIL\UV2 Generic µVision2 files.
In this users guide, we refer to the default folder structure. If you install your software

in a different folder, you must adjust the pathnames to match your installation.

Getting Started and Creating Applications 21

 3

Chapter 3. Development Tools
The Keil development tools for the 8051 offer numerous features and advantages
that help you quickly and successfully develop embedded applications. They are
easy to use and are guaranteed to help you achieve your design goals.

µVision2 Integrated Development
Environment
The µVision2 IDE is a Windows-based software development platform that
combines a robust editor, project manager, and make facility. µVision2 supports
all of the Keil tools for the 8051 including the C compiler, macro assembler,
linker/locator, and object-HEX converter. µVision2 helps expedite the
development process of your embedded applications by providing the following:

� Full-featured source code editor,
� Device database for configuring the development tool setting,
� Project manager for creating and maintaining your projects,
� Integrated make facility for assembling, compiling, and linking your

embedded applications,
� Dialogs for all development tool settings,
� True integrated source-level Debugger with high-speed CPU and peripheral

simulator,
� Advanced GDI interface for software debugging in the target hardware and

for connection to Monitor-51,
� Links to development tools manuals, device datasheets & user’s guides.

NOTE
The µVision2 debugging features are only available in the PK51 and DK51 kits.

22 Chapter 3. Development Tools

3

About the Environment
The µVision2 screen provides you with a menu bar for command entry, a tool
bar where you can rapidly select command buttons, and windows for source
files, dialog boxes, and information displays. µVision2 lets you simultaneously
open and view multiple source files.

Getting Started and Creating Applications 23

 3

Menu Commands, Toolbars, and Shortcuts
The menu bar provides you with menus for editor operations, project
maintenance, development tool option settings, program debugging, window
selection and manipulation, and on-line help. The toolbar buttons allow you to
rapidly execute µVision2 commands. Keyboard shortcuts (that you may
configure) allow you to execute µVision2 commands. The following tables list
the µVision2 menu items and commands, the toolbar icons, default shortcuts,
and descriptions.

File Menu and File Commands

File Menu Toolbar Shortcut Description

New Ctrl+N Create a new source or text file

Open Ctrl+O Open an existing file
Close Close the active file
Save Ctrl+S Create a new source or text file
 Save all open source and text files
Save as… Save and rename the active file
Device Database Maintain the µVision2 device database
Print Setup… Setup the printer
Print Ctrl+P Print the active file
Print Preview Display pages in print view
1-9 Open the most recent used source or text files
Exit Quit µVision2 and prompt for saving files

24 Chapter 3. Development Tools

3

Edit Menu and Editor Commands

Edit Menu Toolbar Shortcut Description

 Home Move cursor to beginning of line
 End Move cursor to end of line
 Ctrl+Home Move cursor to beginning of file
 Ctrl+End Move cursor to end of file
 Ctrl+���� Move cursor one word left
 Ctrl+���� Move cursor one word right
 Ctrl+A Select all text in the current file
Undo Ctrl+Z Undo last operation
Redo Ctrl+Shift+Z Redo last undo command
Cut Ctrl+X Cut selected text to clipboard
 Ctrl+Y Cut text in the current line to clipboard
Copy Ctrl+C Copy selected text to clipboard
Paste Ctrl+V Paste text from clipboard
Indent
Selected Text Indent selected text right one tab stop
Unindent
Selected Text Indent selected text left one tab stop
Toggle
Bookmark

 Ctrl+F2 Toggle bookmark at current line

Goto Next
Bookmark

 F2 Move cursor to next bookmark

Goto Previous
Bookmark

 Shift+F2 Move cursor to previous bookmark

Clear All
Bookmarks

 Clear all bookmarks in active file

Find Ctrl+F Search text in the active file
 F3 Repeat search text forward
 Shift+F3 Repeat search text backward
 Ctrl+F3 Search word under cursor
 Ctrl+] Find matching brace, parenthesis, or bracket

(to use this command place cursor before a
brace, parenthesis, or bracket)

Replace Ctrl+H Replace specific text
Find in Files… Search text in several files

Getting Started and Creating Applications 25

 3

Selecting Text Commands

In µVision2, you may select text by holding down Shift and pressing the
appropriate cursor key. For example, Ctrl+���� moves the cursor to the next word
while Ctrl+Shift+���� selects the text from the current cursor position to the
beginning of the next word.

You may also use the mouse to select text.

To Select… With the Mouse…

Any amount of text Drag over the text
A word Double-click the word
A line of text Move the pointer to the left of the line until it changes to a right-pointing

arrow and click
Multiple lines of text Move the pointer to the left of the lines until it changes to a

right-pointing arrow and drag up or down
A vertical block of text Hold down Alt and drag

26 Chapter 3. Development Tools

3

View Menu

View Menu Toolbar Shortcut Description

Status Bar Show or hide the status bar
File Toolbar Show or hide the File toolbar
Build Toolbar Show or hide the Build toolbar
Debug Toolbar Show or hide the Debug toolbar
Project Window Show or hide the Project window
Output Window Show or hide the Output window
Source Browser Open the Source Browser window

Disassembly
Window

 Show or hide the Disassembly window

Watch & Call
Stack Window

 Show or hide the Watch & Call Stack window

Memory Window Show or hide the Memory window
Code Coverage
Window

 Show or hide the Code Coverage window

Performance
Analyzer Window

 Show or hide the Performance Analyzer
window

Symbol Window Show or hide the Symbol window
Serial Window #1 Show or hide the Serial window #1
Serial Window #2 Show or hide the Serial window #2
Toolbox Show or hide the Toolbox
Periodic Window
Update

 Updates debug windows while running the
program

Workbook Mode Show workbook frame with windows tabs
Options… Change Colors, Fonts, Shortcuts and Editor

options

Getting Started and Creating Applications 27

 3

Project Menu and Project Commands

Project Menu Toolbar Shortcut Description

New Project … Create a new project
Import µVision1
Project …

 Convert a µVision1 Project File (see page 82)

Open Project … Open an existing project
Close Project… Close current project
Target
Environment

 Define paths for tool chain, include & library
files

Targets, Groups,
Files

 Maintain Targets, File Groups and Files of a
project

Select Device for
Target

 Select a CPU from the Device Database

Remove… Remove a Group or File from the project
Options… Alt+F7 Change tool options for Target, Group or File
 Change options for current Target
 Select current Target
File Extensions Select file extensions for different file types
Build Target F7 Translate modified files and build application
Rebuild Target Re-translate all source files and build

application
Translate… Ctrl+F7 Translate current file
Stop Build Stop current build process
1-9 Open the most recent used project files

28 Chapter 3. Development Tools

3

Debug Menu and Debug Commands

Debug Menu Toolbar Shortcut Description

Start/Stop
Debugging

 Ctrl+F5 Start or stop µVision2 Debug Mode

Go F5 Run (execute) until the next active breakpoint
Step F11 Execute a single-step into a function
Step over F10 Execute a single-step over a function
Step out of current
function

 Ctrl+F11 Execute a step out of the current function

Stop Running ESC Stop program execution
Breakpoints… Open Breakpoint dialog
Insert/Remove
Breakpoint

 Toggle breakpoint on current line

Enable/Disable
Breakpoint

 Enable/disable breakpoint on the current line

Disable All
Breakpoints

 Disable all breakpoints in the program

Kill All Breakpoints Kill all breakpoints in the program
Show Next
Statement

 Show next executable statement/instruction

Enable/Disable
Trace Recording

 Enable trace recording for instruction review

View Trace
Records

 Review previous executed instructions

Memory Map… Open memory map dialog
Performance
Analyzer…

 Open setup dialog for the Performance
Analyzer

Inline Assembly… Stop current build process
Function Editor… Edit debug functions and debug INI file

Getting Started and Creating Applications 29

 3

Peripherals Menu

Peripherals
Menu

Toolbar Shortcut Description

Reset CPU Set CPU to reset state
Interrupt,
I/O-Ports,
Serial,
Timer,
A/D Converter,
D/A Converter,
I2C Controller,
CAN Controller,
Watchdog

 Open dialogs for on-chip peripherals, these
dialogs depend on the CPU selected from the
device database. This list will vary by
microcontroller.

Tools Menu

The tools menu allows you to configure and run Gimpel PC-Lint, Siemens Easy-
Case, and custom programs. With Customize Tools Menu… user programs are
added to the menu. For more information refer to “Using the Tools Menu” on
page 72.

Tools Menu Toolbar Shortcut Description

Setup PC-Lint… Configure PC-Lint from Gimpel Software
Lint Run PC-Lint current editor file
Lint all C Source
Files

 Run PC-Lint across the C source files of your
project

Setup Easy-
Case…

 Configure Siemens Easy-Case

Start/Stop Easy-
Case

 Start or stop Siemens Easy-Case

Show File (Line) Open Easy-Case with the current editor file
Customize Tools
Menu…

 Add user programs to the Tools Menu

30 Chapter 3. Development Tools

3

SVCS Menu

With the SVCS menu you configure and add the commands of a Software
Version Control System (SVCS). For more information refer to “Using the
SVCS Menu” on page 76.

SVCS Menu Toolbar Shortcut Description

Configure Version
Control…

 Configure the commands of your SVCS

Window Menu

Window Menu Toolbar Shortcut Description

Cascade Arrange Windows so they overlap
Tile Horizontally Arrange Windows so they no overlap
Tile Vertically Arrange Windows so they no overlap
Arrange Icons Arrange Icons at the bottom of the window
Split Split the active window into panes
1-9 Activate the selected window

Getting Started and Creating Applications 31

 3

Help Menu

Help Menu Toolbar Shortcut Description

Help topics Open on-line help
About µVision Display version numbers and license

information

µVision2 has two operating modes:

� Build Mode: Allows you to translate all the application files and to generate
executable programs. The features of the Build Mode are described in
”Chapter 4. Creating Applications” on page 57.

� Debug Mode: Provides you with a powerful debugger for testing your
application. The Debug Mode is described in “Chapter 5. Testing Programs”
on page 93.

In both operating modes you may use the source editor of µVision2 to modify
your source code.

32 Chapter 3. Development Tools

3

C51 Optimizing C Cross Compiler
The Keil C51 Cross Compiler is an ANSI C Compiler that was written
specifically to generate fast, compact code for the 8051 microcontroller family.
The C51 Compiler generates object code that matches the efficiency and speed
of assembly programming.

Using a high-level language like C has many advantages over assembly language
programming:

� Knowledge of the processor instruction set is not required. Rudimentary
knowledge of the memory structure of the 8051 CPU is desirable (but not
necessary).

� Details like register allocation and addressing of the various memory types
and data types is managed by the compiler.

� Programs get a formal structure (which is imposed by the C programming
language) and can be divided into separate functions. This contributes to
source code reusability as well as better overall application structure.

� The ability to combine variable selection with specific operations improves
program readability.

� Keywords and operational functions that more nearly resemble the human
thought process may be used.

� Programming and program test time is drastically reduced.
� The C run-time library contains many standard routines such as: formatted

output, numeric conversions, and floating-point arithmetic.
� Existing program parts can be more easily included into new programs

because of modular program construction techniques.
� The language C is a very portable language (based on the ANSI standard) that

enjoys wide popular support and is easily obtained for most systems.
Existing program investments can be quickly adapted to other processors as
needed.

Getting Started and Creating Applications 33

 3

C51 Language Extensions
Even though the C51 Compiler is ANSI-compliant, some extensions were added
to support the facilities of the 8051 microprocessor. The C51 Compiler includes
extensions for:

� Data Types,
� Memory Types,
� Memory Models,
� Pointers,
� Reentrant Functions,
� Interrupt Functions,
� Real-Time Operating Systems,
� Interfacing to PL/M and A51 source files.

The following sections briefly describe these extensions.

Data Types
The C51 Compiler supports the scalar data types listed in the following table. In
addition to these scalar types, variables may be combined into structures, unions,
and arrays. Except as noted, you may use pointers to access these data types.

Data Type Bits Bytes Value Range

bit † 1 0 to 1

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 16 2 -32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647

unsigned long 32 4 0 to 4294967295

float 32 4 ±1.175494E-38 to ±3.402823E+38

sbit † 1 0 to 1

sfr † 8 1 0 to 255

sfr16 † 16 2 0 to 65535

34 Chapter 3. Development Tools

3

† bit, sbit, sfr, and sfr16 specific to the 8051 hardware and the C51 and C251 compilers.
They are not a part of ANSI C and cannot be accessed through pointers.

The sbit, sfr, and sfr16 data types allow you to access the special function
registers that are available on the 8051. For example, the declaration:

sfr P0 = 0x80; /* Define 8051 P0 SFR */

declares the variable P0 and assigns it the special function register address of
0x80. This is the address of PORT 0 on the 8051.

The C51 Compiler automatically converts between data types when the result
implies a different type. For example, a bit variable used in an integer
assignment is converted to an integer. You can, of course, coerce a conversion
by using a type cast. In addition to data type conversions, sign extensions are
automatically carried out for signed variables.

Memory Types
The C51 Compiler supports the architecture of the 8051 and its derivatives and
provides access to all memory areas of the 8051. Each variable may be
explicitly assigned to a specific memory space using the memory types listed in
the following table.

Memory Type Description

code Program memory (64 Kbytes); accessed by opcode MOVC @A+DPTR.
data Directly addressable internal data memory; fastest access (128 bytes).

idata Indirectly addressable internal data memory; accessed across the full internal
address space (256 bytes).

bdata Bit-addressable internal data memory; mixed bit and byte access (16 bytes).

xdata External data memory (64 Kbytes); accessed by opcode MOVX @DPTR.
pdata Paged (256 bytes) external data memory; accessed by opcode MOVX @Rn.

Accessing the internal data memory is considerably faster than accessing the
external data memory. For this reason, you should place frequently used
variables in internal data memory and less frequently used variables in external
data memory. This is most easily done by using the SMALL memory model.

By including a memory type specifier in the variable declaration, you can specify
where variables are stored.

Getting Started and Creating Applications 35

 3

As with the signed and unsigned attributes, you may include memory type
specifiers in the variable declaration. For example:

char data var1;
char code text[] = "ENTER PARAMETER:";
unsigned long xdata array[100];
float idata x,y,z;
unsigned int pdata dimension;
unsigned char xdata vector[10][4][4];
char bdata flags;

If the memory type specifier is omitted in a variable declaration, the default or
implicit memory type is automatically selected. The implicit memory type is
applied to all global variables and static variables and to function arguments and
automatic variables that cannot be located in registers.

The default memory type is determined by the SMALL, COMPACT, and
LARGE compiler control directives. These directives specify the memory
model to use for the compilation.

Memory Models
The memory model determines the default memory type used for function
arguments, automatic variables, and variables declared with no explicit memory
type. You specify the memory model on the command line using the SMALL,
COMPACT, and LARGE control directives. By explicitly declaring a variable
with a memory type specifier, you may override the default memory type.

SMALL All variables default to the internal data memory of the 8051.
This is the same as if they were declared explicitly using the
data memory type specifier. In this memory model, variable
access is very efficient. However, all data objects, as well as the
stack must fit into the internal RAM. Stack size is critical
because the stack space used depends on the nesting depth of the
various functions. Typically, if the BL51 code banking
linker/locator is configured to overlay variables in the internal
data memory, the small model is the best model to use.

36 Chapter 3. Development Tools

3

COMPACT All variables default to one page (256 bytes) of external data
memory. The high byte of the address is usually set up via
Port 2 which you must set manually in the startup code (the
compiler does not set this port for you). Variables in the
COMPACT memory model appear as if they were explicitly
declared using the pdata memory type specifier. This memory
model can accommodate a maximum of 256 bytes of variables.
The limitation is due to the indirect addressing scheme using R0
and R1 (MOVX @R0/@R1). This memory model is not as
efficient as the small model, therefore, variable access is not as
fast. However, the COMPACT model is faster than the
LARGE model.

LARGE In large model, all variables default to external data memory
(xdata). This is the same as if they were explicitly declared
using the xdata memory type specifier. The data pointer
(DPTR) is used for addressing. Memory access through this
data pointer is inefficient, especially for variables with a length
of two or more bytes. This type of data access generates more
code than the SMALL or COMPACT models.

NOTE
You should always use the SMALL memory model. It generates the fastest,
tightest, and most efficient code. You can always explicitly specify the memory
area for variables. Move up in model size only if you are unable to make your
application fit or operate using SMALL model.

Getting Started and Creating Applications 37

 3

Pointers
The C51 Compiler supports pointer declarations using the asterisk character
(‘*’). You may use pointers to perform all operations available in standard C.
However, because of the unique architecture of the 8051 and its derivatives, the
C51 Compiler supports two different types of pointers: memory specific
pointers and generic pointers.

Generic Pointers

Generic or untyped pointers are declared in the same way as standard C pointers.
For example:

char *s; /* string ptr */
int *numptr; /* int ptr */
long *state; /* long ptr */

Generic pointers are always stored using three bytes. The first byte is for the
memory type, the second is for the high-order byte of the offset, and the third is
for the low-order byte of the offset.

Generic pointers may be used to access any variable regardless of its location in
8051 memory space. Many of the library routines use these pointer types for this
reason. By using these generic untyped pointers, a function can access data
regardless of the memory in which it is stored.

Generic pointers are convenient, however, they are also slow. They are best
used when the memory space of the object pointed to is uncertain.

38 Chapter 3. Development Tools

3

Memory Specific Pointers

Memory specific or typed pointers include a memory type specification in the
pointer declaration and always refer to a specific memory area. For example:

char data *str; /* ptr to string in data */
int xdata *numtab; /* ptr to int(s) in xdata */
long code *powtab; /* ptr to long(s) in code */

Because the memory type is specified at compile-time, the memory type byte
required by generic pointers is not required. Memory-specific pointers are
stored using one byte (for idata, data, bdata, and pdata pointers) or two bytes
(for code and xdata pointers).

Memory-specific pointers are more efficient and faster to use than generic
pointers. However, they are non-portable. They are best used when the memory
space of the object pointed to is certain and does not change.

Comparison: Memory Specific & Generic Pointers

You can significantly accelerate an 8051 C program by using memory specific
pointers. The following sample program shows the differences in code & data
size and execution time for various pointer declarations.

Description Idata Pointer Xdata Pointer Generic Pointer

Sample Program char idata *ip;
char val;
val = *ip;

char xdata *xp;
char val;
val = *xp;

char *p;
char val;
val = *p;

8051 Program Code
Generated

MOV R0,ip
MOV val,@R0

MOV DPL,xp +1
MOV DPH,xp
MOV A,@DPTR
MOV val,A

MOV R1,p + 2
MOV R2,p + 1
MOV R3,p
CALL CLDPTR

Pointer Size 1 byte 2 bytes 3 bytes
Code Size 4 bytes 9 bytes 11 bytes + library call
Execution Time 4 cycles 7 cycles 13 cycles

Getting Started and Creating Applications 39

 3

Reentrant Functions
Several processes may share a reentrant function at the same time. When a
reentrant function is executing, another process can interrupt the execution and
then begin to execute that same reentrant function. Normally, C51 functions
may not be called recursively or in a fashion which causes reentrancy. The
reason for this limitation is that function arguments and local variables are stored
in fixed memory locations. The reentrant function attribute allows you to
declare functions that may be reentrant and, therefore, may be called recursively.
For example:

int calc (char i, int b) reentrant
{
int x;
x = table [i];
return (x * b);
}

Reentrant functions may be called recursively and may be called simultaneously
by two or more processes. Reentrant functions are often required in real-time
applications or in situations where interrupt code and non-interrupt code must
share a function.

For each reentrant function, a reentrant stack area is simulated in internal or
external memory depending on the memory model.

NOTE
Use the reentrant attribute on a function by function basis. This way, you can
select only those functions that must be reentrant without making the entire
program reentrant. Making an entire program reentrant will result in larger
code size and slower execution speed.

40 Chapter 3. Development Tools

3

Interrupt Functions
The C51 Compiler allows you to create interrupt service routines in C. You
need only be concerned with the interrupt number and register bank selection.
The compiler automatically generates the interrupt vector as well as entry and
exit code for the interrupt routine. The interrupt function attribute, when
included in a declaration, specifies that the associated function is an interrupt
function. Additionally, you can specify the register bank used for that interrupt
with the using function attribute.

unsigned int interruptcnt;
unsigned char second;

void timer0 (void) interrupt 1 using 2 {
if (++interruptcnt == 4000) { /* count to 4000 */
second++; /* second counter */
interruptcnt = 0; /* clear int counter */

}
}

Parameter Passing
The C51 Compiler passes up to three function arguments in CPU registers. This
significantly improves system performance since arguments do not have to be
written to and read from memory. Argument passing can be controlled with the
REGPARMS and NOREGPARMS control directives. The following table
lists the registers used for different arguments and data types.

Argument
Number

char,
1-byte pointer

int,
2-byte pointer

long,
float

generic
pointer

1 R7 R6 & R7 R4 — R7 R1 — R3
2 R5 R4 & R5
3 R3 R2 & R3

If no registers are available for argument passing or if too many arguments are
involved, fixed memory locations are used for those extra arguments.

Getting Started and Creating Applications 41

 3

Function Return Values
CPU registers are always used for function return values. The following table
lists the return types and the registers used for each.

Return Type Register Description

bit Carry Flag

char, unsigned char, 1-byte pointer R7

int, unsigned int, 2-byte pointer R6 & R7 MSB in R6, LSB in R7

long, unsigned long R4 — R7 MSB in R4, LSB in R7

float R4 — R7 32-Bit IEEE format

generic pointer R1 — R3 Memory type in R3, MSB R2, LSB
R1

Register Optimizing
Depending on program context, the C51 Compiler allocates up to 7 CPU
registers for register variables. Registers modified during function execution are
noted by the C51 Compiler within each module. The linker/locator generates a
global, project-wide register file that contains information about all registers that
are altered by external functions. Consequently, the C51 Compiler knows the
register used by each function in an application and can optimize the CPU
register allocation of each C function.

Real-Time Operating System Support
The C51 Compiler integrates well with both the RTX-51 Full and RTX-51 Tiny
multitasking real-time operating systems. The task description tables are
generated and controlled during the link process. For more information about
the RTX real-time operating systems, refer to “Chapter 8. RTX-51 Real-Time
Operating System” on page 169.

42 Chapter 3. Development Tools

3

Interfacing to Assembly
You can easily access assembly routines from C and vice versa. Function
parameters are passed via CPU registers or, if the NOREGPARMS control is
used, via fixed memory locations. Values returned from functions are always
passed in CPU registers.

You may use the SRC directive to direct the C51 Compiler to generate an
assembly source file (ready to assemble with the A51 assembler) instead of an
object file. For example, the following C source file:

unsigned int asmfunc1 (unsigned int arg){
return (1 + arg);

}

generates the following assembly output file when compiled using the SRC
directive.

?PR?_asmfunc1?ASM1 SEGMENT CODE
PUBLIC _asmfunc1

RSEG ?PR?_asmfunc1?ASM1
USING 0

_asmfunc1:
;---- Variable 'arg?00' assigned to Register 'R6/R7' ----

MOV A,R7 ; load LSB of the int
ADD A,#01H ; add 1
MOV R7,A ; put it back into R7
CLR A
ADDC A,R6 ; add carry & R6
MOV R6,A

?C0001:
RET ; return result in R6/R7

You may use the #pragma asm and #pragma endasm preprocessor directives
to insert assembly instructions into your C source code.

Getting Started and Creating Applications 43

 3

Interfacing to PL/M-51
Intel’s PL/M-51 is a popular programming language that is similar to C in many
ways. You can easily interface routines written in C to routines written in
PL/M-51. You can access PL/M-51 functions from C by declaring them with the
alien function type specifier. All public variables declared in the PL/M-51
module are available to your C programs. For example:

extern alien char plm_func (int, char);

The PL/M-51 compiler and the Keil Software tools all generate object files in
the OMF51 format. The linker uses the OMF51 files to resolve external symbols
no matter where they are declared or used.

Code Optimizations
The C51 Compiler is an aggressive optimizing compiler that takes numerous
steps to ensure that the code generated and output to the object file is the most
efficient (smallest and/or fastest) code possible. The compiler analyzes the
generated code to produce the most efficient instruction sequences. This ensures
that your C program runs as quickly and effectively as possible in the least
amount of code space.

The C51 Compiler provides nine different levels of optimizing. Each increasing
level includes the optimizations of levels below it. The following is a list of all
optimizations currently performed by the C51 Compiler.

General Optimizations

� Constant Folding: Constant values occurring in an expression or address
calculation are combined as a single constant.

� Jump Optimizing: Jumps are inverted or extended to the final target address
when the program efficiency is thereby increased.

� Dead Code Elimination: Code that cannot be reached (dead code) is
removed from the program.

� Register Variables: Automatic variables and function arguments are located
in registers whenever possible. No data memory space is reserved for these
variables.

44 Chapter 3. Development Tools

3

� Parameter Passing Via Registers: A maximum of three function arguments
may be passed in registers.

� Global Common Subexpression Elimination: Identical subexpressions or
address calculations that occur multiple times in a function are recognized
and calculated only once whenever possible.

� Common Tail Merging: Common instruction blocks are merged together
using jump instructions.

� Re-use Common Entry Code: Common instruction sequences are moved in
front of a function to reduce code size.

� Common Block Subroutines: Multiple instruction sequences are packed
into subroutines. Instructions are rearranged to maximize the block size.

8051-Specific Optimizations

� Peephole Optimization: Complex operations are replaced by simplified
operations when memory space or execution time can be saved as a result.

� Access Optimizing: Constants and variables are computed and included
directly in operations.

� Extended Access Optimizing: The DPTR register is used as a register
variable for memory specific pointers to improve code density.

� Data Overlaying: Function data and bit segments are OVERLAYABLE and
are overlaid with other data and bit segments by the BL51 linker.

� Case/Switch Optimizing: Depending upon their number, sequence, and
location, switch and case statements may be optimized using a jump table or
string of jumps.

Options for Code Generation

� OPTIMIZE(SIZE): Common C operations are replaced by subprograms.
Program code size is reduced at the expense of program speed.

� OPTIMIZE(SPEED): Common C operations are expanded in-line.
Program speed is increased at the expense of code size.

� NOAREGS: Absolute register access is not used. Program code is
independent of the register bank.

� NOREGPARMS: Parameter passing is performed in local data segments
rather than dedicated registers. This is compatible with earlier versions of the
C51 Compiler, the PL/M-51 compiler, and the ASM-51 assembler.

Getting Started and Creating Applications 45

 3

Debugging
The C51 Compiler uses the Intel Object Format (OMF51) for object files and
generates complete symbol information. Additionally, the compiler can include
all the necessary information such as; variable names, function names, line
numbers, and so on to allow detailed and thorough debugging and analysis with
the µVision2 Debugger or any Intel-compatible emulators. In addition, the
OBJECTEXTEND control directive embeds additional variable type
information in the object file that allows type-specific display of variables and
structures when using certain emulators. You should check with your emulator
vendor to determine if it is compatible with the Intel OMF51 object module
format and if it can accept Keil object modules.

Library Routines
The C51 Compiler includes seven different ANSI compile-time libraries that are
optimized for various functional requirements.

Library File Description

C51S.LIB Small model library without floating-point arithmetic

C51FPS.LIB Small model floating-point arithmetic library

C51C.LIB Compact model library without floating-point arithmetic

C51FPC.LIB Compact model floating-point arithmetic library

C51L.LIB Large model library without floating-point arithmetic

C51FPL.LIB Large model floating-point arithmetic library

80C751.LIB Library for use with the Philips 8xC751 and derivatives.

Source code is provided for library modules that perform hardware-related I/O
and is found in the \KEIL\C51\LIB directory. You may use these source files to
help you quickly adapt the library to perform I/O using any I/O device in your
target.

46 Chapter 3. Development Tools

3

Intrinsic Library Routines
The libraries included with the compiler include a number of routines that are
implemented as intrinsic functions. Non-intrinsic functions generate ACALL or
LCALL instructions to perform the library routine. The following intrinsic
functions generate in-line code that is faster and more efficient than a function
call.

Intrinsic Function Description

crol Rotate character left.

cror Rotate character right.

irol Rotate integer left.

iror Rotate integer right.

lrol Rotate long integer left.

lror Rotate long integer right.

nop No operation (8051 NOP instruction).

testbit Test and clear bit (8051 JBC instruction).

Program Invocation
Typically, the C51 Compiler is called from the µVision2 IDE when you build
your project. However, you may invoke the compiler in a DOS box by typing
C51 on the command line. The name of the C source file to compile must be
specified on the command line along with any compiler directives. For example:

>C51 MODULE.C COMPACT PRINT (E:M.LST) DEBUG SYMBOLS
C51 COMPILER V6.00

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

Compiler control directives may be entered on the command line or via the
#pragma directive at the beginning of the C source file. For a complete list of
the available compiler directives refer to “C51/C251 Compiler” on page 213.

Getting Started and Creating Applications 47

 3

Sample Program
The following example shows some functional capabilities of the C51 Compiler.
The compiler produces object files in OMF51 format in response to the various
C language statements and compiler directives.

The compiler emits all necessary information such as variable names, function
names, line numbers, and so on to allow detailed program debugging and
analysis with the µVision2 Debugger or an emulator.

After compiling, the C51 Compiler produces a listing file that contains source
code, directive information, an assembly listing, and a symbol table. An
example listing file created by the C51 Compiler is shown on the following page.

48 Chapter 3. Development Tools

3

C51 COMPILER V6.00, SAMPLE 01/01/2001 08:00:00 PAGE 1

DOS C51 COMPILER V6.00, COMPILATION OF MODULE SAMPLE
OBJECT MODULE PLACED IN SAMPLE.OBJ
COMPILER INVOKED BY: C:\KEIL\C51\BIN\C51.EXE SAMPLE.C CODE

stmt level source
1 #include <reg51.h> /* SFR definitions for 8051 */
2 #include <stdio.h> /* standard i/o definitions */
3 #include <ctype.h> /* defs for char conversion */
4
5 #define EOT 0x1A /* Control+Z signals EOT */
6
7 void main (void) {
8 1 unsigned char c;
9 1
10 1 /* setup serial port hdw (2400 Baud @12 MHz) */
11 1 SCON = 0x52; /* SCON */
12 1 TMOD = 0x20; /* TMOD */
13 1 TCON = 0x69; /* TCON */
14 1 TH1 = 0xF3; /* TH1 */
15 1
16 1 while ((c = getchar ()) != EOF) {
17 2 putchar (toupper (c));
18 2 }
19 1 P0 = 0; /* clear Output Port to signal ready */
20 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

; FUNCTION main (BEGIN)
; SOURCE LINE # 7
; SOURCE LINE # 11

0000 759852 MOV SCON,#052H
; SOURCE LINE # 12

0003 758920 MOV TMOD,#020H
; SOURCE LINE # 13

0006 758869 MOV TCON,#069H
; SOURCE LINE # 14

0009 758DF3 MOV TH1,#0F3H
000C ?C0001:

; SOURCE LINE # 16
000C 120000 E LCALL getchar
000F 8F00 R MOV c,R7
0011 EF MOV A,R7
0012 F4 CPL A
0013 6008 JZ ?C0002

; SOURCE LINE # 17
0015 120000 E LCALL _toupper
0018 120000 E LCALL _putchar

; SOURCE LINE # 18
001B 80EF SJMP ?C0001
001D ?C0002:

; SOURCE LINE # 19
001D E4 CLR A
001E F580 MOV P0,A

; SOURCE LINE # 20
0020 22 RET

; FUNCTION main (END)

MODULE INFORMATION: STATIC OVERLAYABLE
CODE SIZE = 33 ----
CONSTANT SIZE = ---- ----
XDATA SIZE = ---- ----
PDATA SIZE = ---- ----
DATA SIZE = ---- 1
IDATA SIZE = ---- ----
BIT SIZE = ---- ----

END OF MODULE INFORMATION.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

The C51 Compiler
produces a listing file
with line numbers and
the time and date of
compilation.

Information about
compiler invocation
and the object file
generated is printed.

The listing contains a
line number before
each source line and
the instruction nesting
{ } level.

If errors or possible
sources of errors exist
an error or warning
message is displayed.

Enable under µVision2
Options for Target –
Listing - Assembly
Code the C51 CODE
directive. This gives
you an assembly
listing file with
embedded source line
numbers.

A memory overview
provides information
about the occupied
8051 memory areas.

The number of errors
and warnings in the
program are included
at the end of the
listing.

Getting Started and Creating Applications 49

 3

A51 Macro Assembler
The A51 Assembler is a macro assembler for the 8051 microcontroller family. It
translates symbolic assembler language mnemonics into executable machine
code. The A51 Assembler allows you to define each instruction in an 8051
program and is used where utmost speed, small code size, and exact hardware
control is essential. The assembler’s macro facility saves development and
maintenance time since common sequences need only be developed once.

Source-Level Debugging
The A51 Assembler generates complete line number, symbol, and type
information in the object file created. This allows exact display of program
variables in your debugger. Line numbers are used for source-level debugging of
your assembler programs with the µVision2 Debugger or third-party emulator.

Functional Overview
The A51 Assembler translates an assembler source file into a relocatable object
module. It generates a listing file optionally with symbol table and cross
reference. The A51 Assembler supports two different macro processors:

� The Standard Macro Processor is the easier macro processor to use. It
allows you to define and use macros in your 8051 assembly programs. The
standard macro syntax is compatible with that used in many other assemblers.

� The Macro Processing Language (MPL) is a string replacement facility that
is fully compatible with the Intel ASM51 macro processor. MPL has several
predefined macro processor functions that perform many useful operations
like string manipulation or number processing.

Another powerful feature of the A51 Assembler macro processors is conditional
assembly depending on command line directives or assembler symbols.
Conditional assembly of sections of code can help you achieve the most compact
code possible. It also allows you to generate different applications from one
assembly source file.

50 Chapter 3. Development Tools

3

Listing File
Following is an example listing file generated by the assembler.

A51 MACRO ASSEMBLER Test Program 07/01/99 08:00:00 PAGE 1

DOS MACRO ASSEMBLER A51 V6.00
OBJECT MODULE PLACED IN SAMPLE.OBJ
ASSEMBLER INVOKED BY: C:\KEIL\C51\BIN\A51.EXE SAMPLE.A51 XREF

LOC OBJ LINE SOURCE
1 $TITLE ('Test Program')
2 NAME SAMPLE
3
4 EXTRN CODE (PUT_CRLF, PUTSTRING, InitSerial)
5 PUBLIC TXTBIT
6
7 PROG SEGMENT CODE
8 CONST SEGMENT CODE
9 BITVAR SEGMENT BIT
10

---- 11 CSEG AT 0
12

0000 020000 F 13 Reset: JMP Start
14

---- 15 RSEG PROG
16 ; *****

0000 120000 F 17 Start: CALL InitSerial ;Init Serial Interface
18
19 ; This is the main program. It is an endless
20 ; loop which displays a text on the console.

0003 C200 F 21 CLR TXTBIT ; read from CODE
0005 900000 F 22 Repeat: MOV DPTR,#TXT
0008 120000 F 23 CALL PUTSTRING
000B 120000 F 24 CALL PUT_CRLF
000E 80F5 25 SJMP Repeat

26 ;
---- 27 RSEG CONST
0000 54455354 28 TXT: DB 'TEST PROGRAM',00H
0004 2050524F
0008 4752414D
000C 00

29
30
31

---- 32 RSEG BITVAR ; TXTBIT=0 read from CODE
0000 33 TXTBIT: DBIT 1 ; TXTBIT=1 read from XDATA

34
35 END

XREF SYMBOL TABLE LISTING
---- ------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES / REFERENCES

BITVAR B SEG 0001H REL=UNIT 9# 32
CONST. C SEG 000DH REL=UNIT 8# 27
INITSERIAL C ADDR ----- EXT 4# 17
PROG C SEG 0010H REL=UNIT 7# 15
PUTSTRING. C ADDR ----- EXT 4# 23
PUT_CRLF C ADDR ----- EXT 4# 24
REPEAT C ADDR 0005H R SEG=PROG 22# 25
RESET. C ADDR 0000H A 13#
SAMPLE N NUMB ----- 2
START. C ADDR 0000H R SEG=PROG 13 17#
TXT. C ADDR 0000H R SEG=CONST 22 28#
TXTBIT B ADDR 0000H.0 R SEG=BITVAR 5 5 21 33#

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

A51 produces a listing
file with line numbers
as well as the time and
date of the translation.
Information about
assembler invocation
and the object file
generated is printed.

Typical programs start
with EXTERN,
PUBLIC, and
SEGMENT directives.

The listing contains a
source line number
and the object code
generated by each
source line.

Error messages and
warning messages are
included in the listing
file. The position of
each error is clearly
marked.

Enable under µVision2
Options for Target –
Listing – Cross
Reference to get a
detailed listing of all
symbols used in the
assembler source file.

The register banks
used, and the total
number of warnings
and errors are at the
end of the listing file.

Getting Started and Creating Applications 51

 3

BL51 Code Banking Linker/Locator
The BL51 code banking linker/locator combines one or more object modules
into a single executable 8051 program. The linker resolves external and public
references and assigns absolute addresses to relocatable programs segments.

The BL51 code banking linker/locator processes object modules created by the
Keil C51 Compiler and A51 Assembler and the Intel PL/M-51 Compiler and
ASM-51 Assembler. The linker automatically selects the appropriate run-time
library and links only those library modules that are required.

You may invoke the BL51 code banking linker/locator from the command line
specifying the names of the object modules to combine. The default controls for
the BL51 code banking linker/locator have been carefully chosen to
accommodate most applications without the need to specify additional directives.
However, it is easy for you to specify custom settings for your application.

Data Address Management
The BL51 code banking linker/locator manages the limited internal memory of
the 8051 by overlaying variables for functions that are mutually exclusive. This
greatly reduces the overall memory requirement of most 8051 applications.

The BL51 code banking linker/locator analyzes the references between functions
to carry out memory overlaying. You may use the OVERLAY directive to
manually control functions references the linker uses to determine exclusive
memory areas. The NOOVERLAY directive lets you completely disable
memory overlaying. These directives are useful when using indirectly called
functions or when disabling overlaying for debugging.

Code Banking
The BL51 code banking linker/locator supports the ability to create application
programs that are larger than 64 Kbytes. Since the 8051 does not directly
support more than 64 Kbytes of code address space, there must be external
hardware that swaps code banks. The hardware that does this must be controlled
by software running on the 8051. This process is known as bank switching.

52 Chapter 3. Development Tools

3

The BL51 code banking linker/locator lets you manage 1 common area and 32
banks of up to 64 Kbytes each for a total of 2 Mbytes of bank-switched 8051
program space. Software support for the external bank switching hardware
includes a short assembly file you can edit for your specific hardware platform.

The BL51 code banking linker/locator lets you specify the bank in which to
locate a particular program module. By carefully grouping functions in the
different banks, you can create very large, efficient applications.

Common Area

The common area in a bank switching program is an area of memory that can be
accessed at all times from all banks. The common area cannot be physically
swapped out or moved around. The code in the common area is either duplicated
in each bank (if the entire program area is swapped) or can be located in a
separate area or EPROM (if the common area is not swapped).

The common area contains program sections and constants that must be available
at all times. It may also contain frequently used code. By default, the following
code sections are automatically located in the common area:

� Reset and Interrupt Vectors,
� Code Constants,
� C51 Interrupt Functions,
� Bank Switch Jump Table,
� Some C51 Run-Time Library Functions.

Executing Functions in Other Banks

Code banks are selected by additional software-controlled address lines that are
simulated using 8051 port I/O lines or a memory-mapped latch.

The BL51 code banking linker/locator generates a jump table for functions in
other code banks. When your C program calls a function located in a different
bank, it switches the bank, jumps to the desired function, restores the previous
bank (when the function completes), and returns execution to the calling routine.

The bank switching process requires approximately 50 CPU cycles and
consumes an additional 2 bytes of stack space. You can dramatically improve
system performance by grouping interdependent functions in the same bank.
Functions that are frequently invoked from multiple banks should be located in
the common area.

Getting Started and Creating Applications 53

 3

Map File
Following is an example listing file generated by BL51.

BL51 BANKED LINKER/LOCATER V4.00 07/01/99 08:00:00 PAGE 1

MS-DOS BL51 BANKED LINKER/LOCATER V4.00, INVOKED BY:
C:\KEIL\C51\BIN\BL51.EXE SAMPLE.OBJ

MEMORY MODEL: SMALL

INPUT MODULES INCLUDED:
SAMPLE.OBJ (SAMPLE)
C:\C51\LIB\C51S.LIB (?C_STARTUP)
C:\C51\LIB\C51S.LIB (PUTCHAR)
C:\C51\LIB\C51S.LIB (GETCHAR)
C:\C51\LIB\C51S.LIB (TOUPPER)
C:\C51\LIB\C51S.LIB (_GETKEY)

LINK MAP OF MODULE: SAMPLE (SAMPLE)

TYPE BASE LENGTH RELOCATION SEGMENT NAME

* * * * * * * D A T A M E M O R Y * * * * * * *
REG 0000H 0008H ABSOLUTE "REG BANK 0"
DATA 0008H 0001H UNIT ?DT?GETCHAR
DATA 0009H 0001H UNIT _DATA_GROUP_

000AH 0016H *** GAP ***
BIT 0020H.0 0000H.1 UNIT ?BI?GETCHAR

0020H.1 0000H.7 *** GAP ***
IDATA 0021H 0001H UNIT ?STACK

* * * * * * * C O D E M E M O R Y * * * * * * *
CODE 0000H 0003H ABSOLUTE
CODE 0003H 0021H UNIT ?PR?MAIN?SAMPLE
CODE 0024H 000CH UNIT ?C_C51STARTUP
CODE 0030H 0027H UNIT ?PR?PUTCHAR?PUTCHAR
CODE 0057H 0011H UNIT ?PR?GETCHAR?GETCHAR
CODE 0068H 0018H UNIT ?PR?_TOUPPER?TOUPPER
CODE 0080H 000AH UNIT ?PR?_GETKEY?_GETKEY

OVERLAY MAP OF MODULE: SAMPLE (SAMPLE)

SEGMENT DATA_GROUP
+--> CALLED SEGMENT START LENGTH

--
?C_C51STARTUP ----- -----

+--> ?PR?MAIN?SAMPLE

?PR?MAIN?SAMPLE 0009H 0001H
+--> ?PR?GETCHAR?GETCHAR
+--> ?PR?_TOUPPER?TOUPPER
+--> ?PR?PUTCHAR?PUTCHAR

?PR?GETCHAR?GETCHAR ----- -----
+--> ?PR?_GETKEY?_GETKEY
+--> ?PR?PUTCHAR?PUTCHAR

LINK/LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)

BL51 produces a MAP
file (extension .M51)
with date and time of
the link/locate run.

BL51 displays the
invocation line and the
memory model.

Each input module
and the library
modules included in
the application are
listed.

The memory map
contains the usage of
the physical 8051
memory.

The overlay-map
displays the structure
of the program and the
location of the bit and
data segments of each
function.

Warning messages
and error messages
are listed at the end of
the MAP file. These
may point to possible
problems encountered
during the link/locate
run.

54 Chapter 3. Development Tools

3

LIB51 Library Manager
The LIB51 library manager lets you create and maintain library files. A library
file is a formatted collection of object modules (created by the C compiler and
assembler). Library files provide a convenient method of combining and
referencing a large number of object modules that may be accessed by the
linker/locator.

To build a library with the µVision2 project manager enable Options for Target
– Output – Create Library. You may also call LIB51 from a DOS box. Refer
to “LIB51 / L251 Library Manager Commands” on page 218 for command list.

There are a number of benefits to using a library. Security, speed, and
minimized disk space are only a few of the reasons to use a library.
Additionally, libraries provide a good vehicle for distributing a large number of
useful functions and routines without the need to distribute source code. For
example, the ANSI C library is provided as a set of library files.

The µVision2 project C:\KEIL\C51\RTX_TINY\RTX_TINY.UV2 allows you to
modify and create the RTX51 Tiny real-time operating system library. It is easy
to build your own library of useful routines like serial I/O, CAN, and FLASH
memory utilities that you may use over and over again. Once these routines are
written and debugged, you may merge them into a library. Since the library
contains only the object modules, the build time is shortened since these modules
do not require re-compilation for each project.

Libraries are used by the linker when linking and locating the final application.
Modules in the library are extracted and added to the program only if they are
required. Library routines that are not specifically invoked by your program are
not included in the final output. The linker extracts the modules from the library
and processes them exactly as it does other object modules.

Getting Started and Creating Applications 55

 3

OC51 Banked Object File Converter
The OC51 banked object file converter creates absolute object modules for each
code bank in a banked object module. Banked object modules are created by the
BL51 code banking linker/locator when you create a bank switching application.
Symbolic debugging information is copied to the absolute object files and can be
used by the µVision2 Debugger or an in-circuit emulator.

You may use the OC51 banked object file converter to create absolute object
modules for the command area and for each code bank in your banked object
module. You may then generate Intel HEX files for each of the absolute object
modules using the OH51 object-hex converter.

OH51 Object-Hex Converter
The OH51 object-hex converter creates Intel HEX files from absolute object
modules. Absolute object modules can be created by the BL51 code banking
linker or by the OC51 banked object file converter. Intel HEX files are ASCII
files that contain a hexadecimal representation of your application. They can be
easily loaded into a device programmer for writing EPROMS.

56 Chapter 3. Development Tools

3

Getting Started and Creating Applications 57

 4

Chapter 4. Creating Applications
To make it easy for you to evaluate and become familiar with our product line,
we provide an evaluation version with sample programs and limited versions of
our tools. The sample programs are also included with our standard product kits.

NOTE
The Keil C51 evaluation tools are limited in functionality and the code size of
the application you can create. Refer to the “Release Notes” for more
information on the limitations of the evaluation tools. For larger applications,
you need to purchase one of our development kits. Refer to “Product Overview”
on page 16 for a description of the kits that are available.

This chapter describes the Build Mode of µVision2 and shows you how to use
the user interface to create a sample program. Also discussed are options for
generating and maintaining projects. This includes output file options, the
configuration of the C51 Compiler for optimum code quality, and the features of
the µVision2 project manager.

Creating Projects
µVision2 includes a project manager that makes it easy to design applications for
the 8051 family. You need to perform the following steps to create a new
project:
� Start µVision2, create a project file and select a CPU from the device

database.
� Create a new source file and add this source file to the project.
� Add and configure the startup code for the 8051 device
� Set tool options for target hardware.
� Build project and create a HEX file for PROM programming.

The description is a step-by-step tutorial that shows you how to create a simple
µVision2 project.

58 Chapter 4. Creating Applications

4

 Starting µVision2 and Creating a Project
µVision2 is a standard Windows application and started by clicking on the
program icon. To create a new project file select from the µVision2 menu
Project – New Project…. This opens a standard Windows dialog that asks you
for the new project file name.

We suggest that you use a separate folder for each project. You can simply use
the icon Create New Folder in this dialog to get a new empty folder. Then
select this folder and enter the file name for the new project, i.e. Project1.
µVision2 creates a new project file with the name PROJECT1.UV2 which contains
a default target and file group name. You can see these names in the Project
Window – Files.

Now use from the menu Project – Select Device for Target and select a CPU
for your project. The Select Device dialog box shows the µVision2 device
database. Just select the microcontroller you use. We are using for our
examples the Philips 80C51RD+ CPU. This selection sets necessary tool
options for the 80C51RD+ device and simplifies in this way the tool
configuration.

NOTE
On some devices, the µVision2 environment needs additional parameters that
you have to enter manually. Carefully read the information provided under

Getting Started and Creating Applications 59

 4

Description in this dialog, since it might have additional instructions for the
device configuration.

Once you have selected a CPU from the device database you can open the user
manuals for that device in the Project Window – Books page. These user
manuals are part of the Keil Development Tools CD-ROM that should be present
in your CD drive.

 Creating New Source Files
You may create a new source file with the menu option File – New. This opens
an empty editor window where you can enter your source code. µVision2
enables the C color syntax highlighting when you save your file with the dialog
File – Save As… under a filename with the extension *.C. We are saving our
example file under the name MAIN.C.

Once you have created your source file you can add this file to your project.
µVision2 offers several ways to add source files to a project. For example, you
can select the file group in the Project Window – Files page and click with the
right mouse key to open a local menu. The option Add Files opens the standard
files dialog. Select the file MAIN.C you have just created.

60 Chapter 4. Creating Applications

4

Adding and Configuring the Startup Code
The STARTUP.A51 file is the startup code for the most 8051 CPU variants. The
startup code clears the data memory and initializes hardware and reentrant stack
pointers. In addition, some 8051 derivatives require a CPU initialization code
that needs to match the configuration of your hardware design. For example, the
Philips 8051RD+ offers you on-chip xdata RAM that should be enabled in the
startup code. Since you need to modify that file to match your target hardware,
you should copy the STARTUP.A51 file from the folder C:\KEIL\C51\LIB to your
project folder.

It is a good practice to create a new file group for the CPU configuration files.
With Project – Targets, Groups, Files… you can open a dialog box where you
add a group named System Files to your target. In the same dialog box you can
use the Add Files to Group… button to add the STARTUP.A51 file to your
project.

Getting Started and Creating Applications 61

 4

The Project Window – Files
lists all items of your project.

The µVision2 Project Window – Files should now show the above file
structure. Open STARTUP.A51 in the editor with a double click on the file name
in the project window. Then you configure the startup code as described in
“Chapter 10. CPU and C Startup Code” on page 197. If you are using on-chip
RAM of your device the settings in the startup code should match the settings of
the Options – Target dialog. This dialog is discussed in the following.

62 Chapter 4. Creating Applications

4

 Setting Tool Options for Target
µVision2 lets you set options for your target hardware. The dialog Options for
Target opens via the toolbar icon. In the Target tab you specify all relevant
parameters of your target hardware and the on-chip components of the device
you have selected. The following the settings for our example are shown.

The following table describes the options of the Target dialog:

Dialog Item Description

Xtal Specifies the CPU clock of your device. In most cases this value is
identical with the XTAL frequency.

Memory Model Specifies the C51 Compiler memory model. For starting new applications
the default SMALL is a good choice. Refer to “Memory Models and
Memory Types” on page 78 for a discussion of the various memory models.

Allocate On-chip …
Use multiple DPTR
registers

Specifies the usage of the on-chip components that are typically enabled in
the CPU startup code. If you are using on-chip xdata RAM (XRAM) you
should also enable the XRAM access in the STARTUP.A51 file.

Off-chip … Memory Here you specify all external memory areas of the target hardware.
Code Banking
Xdata Banking

Specifies the parameters for code and xdata banking. Refer to “Code
Banking” on page 67 for more information.

NOTE
Several Options in the Target dialog are only available if you are using the
LX51 Linker/Locater. The LX51 Linker/Locater is only available in the PK51
package.

Getting Started and Creating Applications 63

 4

 Building Projects and Creating a HEX Files
Typical, the tool settings under Options – Target are all you need to start a new
application. You may translate all source files and line the application with a
click on the Build Target toolbar icon. When you build an application with
syntax errors, µVision2 will display errors and warning messages in the Output
Window – Build page. A double click on a message line opens the source file
on the correct location in a µVision2 editor window.

Once you have successfully generated your application you can start debugging.
Refer to “Chapter 5. Testing Programs” on page 93 for a discussion of the
µVision2 debugging features. After you have tested your application, it is
required to create an Intel HEX file to download the software into an EPROM
programmer or simulator. µVision2 creates HEX files with each build process
when Create HEX file under Options for Target – Output is enabled. You
may start your PROM programming utility after the make process when you
specify the program under the option Run User Program #1.

64 Chapter 4. Creating Applications

4

Now you can modify existing source code or add new source files to the project.
The Build Target toolbar button translates only modified or new source files
and generates the executable file. µVision2 maintains a file dependency list and
knows all include files used within a source file. Even the tool options are saved
in the file dependency list, so that µVision2 rebuilds files only when needed.
With the Rebuild Target command, all source files are translated, regardless of
modifications.

Project Targets and File Groups
By using different Project Targets µVision2 lets you create several programs
from a single project. You may need one target for testing and another target for
a release version of your application. Each target allows individual tool settings
within the same project file.

Files Groups let you group associated files together in a project. This is useful
for grouping files into functional blocks or for identifying engineers in your
software team. We have already used file groups in our example to separate the
CPU related files from other source files. With these techniques it is easily
possible to maintain complex projects with several 100 files in µVision2.

The Project – Targets, Groups, Files… dialog allows you to create project
targets and file groups. We have already used this dialog to add the system
configuration files. An example project structure is shown below.

The Project Windows shows all groups and the
related files. Files are built and linked in the same
order as shown in this window. You can move
file positions with Drag & Drop. You may select
a target or group name and Click to rename it.
The local menu opens with a right mouse Click
and allows you to:
• Set tool options
• Remove the item

• Add files to a group
• Open the file.

In the build toolbar you can quickly change the
current project target to build.

Getting Started and Creating Applications 65

 4

Viewing File and Group Attributes in the
Project Window
Different icons are used in the Project Window – Files page to show the
attributes of files and file groups. These icons are explained below:

 Files that are translated and linked into the project are marked with an
arrow in the file icon.

 Files that are excluded from the link run do not have the arrow. This is
typical for document files. However you may exclude also source files
when you disable Include in Target Build in the Properties dialog. See
also “File and Group Specific Options – Properties Dialog” on page 87.

 Read only files are marked with a key. This is typical for files that are
checked into a Software Version Control System, since the SVCS makes
the local copy of such files read only. See also “Using the SVCS Menu”
on page 76.

Files or file groups with specific options are marked with dots. Refer to
“File and Group Specific Options – Properties Dialog” on page 87 for
more information.

NOTE
The different icons give you quick overview of the tool settings in the various
targets of a project. The icons reflect always the attributes of the current
selected target. For example, if you have set specific options on a file or file
group in one target, then the dots in the icon are only shown if this target is
currently selected.

66 Chapter 4. Creating Applications

4

Overview of Configuration Dialogs
The options dialog lets you set all the tool options. Via the local menu in the
Project Window – Files you may set different options for a file group or even a
single file; in this case you get only the related dialog pages. With the context
help button you get help on most dialog items. The following table describes
the options of the Target dialog.

Dialog Page Description

Target Specify the hardware of your application. See page 62 for details.
Output Define the output files of the tool chain and allows you to start user programs after

the build process. See page 82 for more information.
Listing Specify all listing files generated by the tool chain.
C51 Set C51 Compiler specific tool options like code optimization or variable allocation.

Refer to “Other C51 Compiler Directives” on page 80 for information.
A51, AX51 Set assembler specific tool options like macro processing.
L51 Locate
LX51 Locate

Define the location of memory classes and segments. Typical you will enable Use
Memory Layout from Target Dialog as show below to get automatic settings.
Refer to “Locating Segments to Absolute Memory Locations” on page 86 for more
information on this dialog.

L51 Misc
LX51 Misc

Other linker related settings like Warning or memory Reserve directive.

Debug Settings for the µVision2 Debugger. Refer to page 101 for more information.
Properties File information and special options for files and groups refer to “File and Group

Specific Options – Properties Dialog” on page 87.

Below the L51 Locate dialog page is shown. When you enable Use Memory
Layout from Target Dialog µVision2 uses the memory information from the
selected Device and the Target page. You may still add additional segments to
these settings.

Getting Started and Creating Applications 67

 4

Code Banking
A standard 8051 device has an address range of 64 KBytes for code space. To
expand program code beyond this 64KB limit, the Keil 8051 tools support code
banking. This technique lets you manage one common area and 32 banks of up
to 64 Kbytes each for a total of 2 Mbytes of bank-switched memory.

For example, your hardware design
may include one 32K ROM
mapped from address 0000h to
7FFFh (known as the common area
or common ROM) and four 32K
ROMs mapped from code address
8000h to 0FFFFh (known as the
code bank ROMs). The code bank
ROMs are typically selected via
port bits. The figure on the right
shows this memory structure.

ROM
Bank #0

ROM
Bank #1

ROM
Bank #2

ROM
Bank #3

ROM
Common

Area

0x0000

0x7FFF

0x8000

0xFFFF

Code banking is enabled and
configured in the Options for
Target – Target dialog. Here you
enter the number of code banks
supported by your hardware and
the banked area. For the above
memory example the entries shown
on the right are required.

For the configuration of your
banking hardware you need to add
the file C51\LIB\L51_BANK.A51 to
your project. Copy this file into
the project folder together with the
other source files of your project
and add it to a file group. The
L51_BANK.A51 file must be
modified to match the your target
hardware.

For each source file or file group of your project the code bank for the program code
can be specified for in the Options – Properties dialog.

68 Chapter 4. Creating Applications

4

The Options – Properties dialog
opens with a right mouse click in
the project window on the file or
file group. This dialog allows you
to select the code bank or the
common area.

The common code area can be
accessed in all code banks. The
common area usually includes
routines and constant data that
must always be accessible, such as:
interrupt routines, interrupt and
reset vectors, string constants, and
bank switch routines. The linker
therefore locates only the program
segments of a module into the bank
area. However, if you can ensure
that your program accesses
information in constant segments
only within a specific code bank,
you may locate these segments into
this bank using the BANKx linker
directives in the dialog Options
for Target – L51 Misc.

The above steps complete the configuration of a your code banking application.
The µVision2 debugger fully supports code banking and allows you to test your
program. If you enable “Create HEX File” in the Options for Target –
Output dialog, the tools generate for each code bank a physical 64KB image
that starts at address 0. You need to program these HEX files using your PROM
programmer into the correct memory location of your EPROM.

Getting Started and Creating Applications 69

 4

µVision2 Utilities
µVision2 contains many powerful functions that help you during your software
project. These utilities are discussed in the following section.

 Find in Files
The Edit – Find in Files dialog performs a global text search in all specified
files. The search results are displayed in the Find in Files page of the Output
window. A double click in the Find in Files page positions the editor to the text
line with matching string.

 Source Browser
The Source Browser displays information about program symbols in your
program. If Options for Target – Output – Browser Information is enabled
when you build the target program, the compiler includes browser information
into the object files. Use View – Source Browser to open the Browse window.

The Browse window lists the symbol name, class, type, memory space and the
number of uses. Click on the list item to sort the information. You can filter the
browse information using the options described in the following table:

70 Chapter 4. Creating Applications

4

Browse Options Description

Symbol Specify a mask that is used to match symbol names. The mask may consist
of alphanumeric characters plus mask characters:
 # matches a digit (0 – 9)
 $ matches any character
 * matches zero or more characters.

Filter on Select the definition type of the symbol
File Outline Select the file for which information should be listed.
Memory Spaces Specify the memory type for data and function symbols.

The following table provides a few examples of symbol name masks.

Mask Matches symbol names …

* Matches any symbol. This is the default mask in the Symbol Browser.

Matches any symbol that contains one digit in any position.

_a$#* Matches any symbol with an underline followed by the letter a followed by any
character followed by a digit ending with zero or more characters. For example,
_ab1 or _a10value.

_*ABC Matches any symbol with an underline followed by zero or more characters followed
by ABC.

The local menu in the Browse window opens with a right
mouse Click and allows you to open the editor on the
selected reference. For functions you can also view the
Call and Callers graph. The Definitions and References
view gives you additional information as shown below:

Symbol Description

[D] Definition
[R] Reference
[r] read access
[w] write access
[r/w] read/write access
[&] address reference

Getting Started and Creating Applications 71

 4

You may use the browser information within an editor
window. Select the item that you want to search for and
open the local menu with a right mouse click or use the
following keyboard shortcuts:

Shortcut Description

F12 Goto Definition; place cursor to the symbol definition

Shift+F12 Goto Reference; place cursor to a symbol reference

Ctrl+Num+ Goto Next Reference or Definition

Ctrl+Num– Goto Previous Reference or Definition

Key Sequence for Tool Parameters
A key sequence may be used to pass arguments from the µVision2 environment
to external user programs. Key sequences can be applied in the Tools menu,
SVCS menu, and the Run User Program arguments in the Options for Target
– Output dialog. A key sequence is a combination of a Key Code and a File
Code. The available Key Codes and File Codes are listed in the tables below:

Key Code Specifies the path selected with the File Code

% Filename with extension, but without path specification (PROJECT1.UV2)

Filename with complete path specification (C:\MYPROJECT\PROJECT1.UV2)

% Filename with extension, but without path specification (PROJECT1.UV2)

@ Filename without extension and path specification (PROJECT1)

$ Folder name of the file specified in the file code (C:\MYPROJECT)

~ † Line number of current cursor position (only valid for file code F)
^ † Column number of current cursor position (only valid for file code F)

† The key code ~ and ^ can be used only in combination with the file code F
To use $, #, %, @, ~ or ^ in the user program command line, use $$, ##, %%, @@, ~~ or ^^.

For example, @@ gives a single @ in the user program command line.

File Code Specifies the file name or argument inserted in the user program line

F Selected file in the Project Window - Files page (MEASURE.C). Returns the
project file if the target name is selected or the current active editor file if a group
name is selected.

P Name of the current project file (PROJECT1.UV2)

L Linker output file, typical the executable file for debugging (PROJECT1)

H Application HEX file (PROJECT1.H86)

X µVision2 executable program file (C:\KEIL\UV2\UV2.EXE)

72 Chapter 4. Creating Applications

4

The following file codes are used for SVCS systems.
For more information refer to “Using the SVCS Menu” on page 76.

Q † File name that holds comments for the SVCS system.

R † String that holds a revision number for the SVCS system.

C † String that holds a check point string for the SVCS system.

U † User name specified under SVCS – Configure Version Control – User Name
V † File name specified under SVCS – Configure Version Control – Database

† The file codes Q, R, C, U and V can be used only in combination with the key code %

Using the Tools Menu
Via the Tools menu, you
run external programs.
You may add custom
programs to the Tools
menu with the dialog
Tools – Customize Tools
Menu…. This dialog
configures the parameters
for external user
applications. The dialog
right shows a sample tool
setup. The dialog options
are explained below.

The above entries extend
the Tools menu as shown
right.

Dialog Item Description

Menu Content Text shown in the Tools menu. This line may contain key codes and file
codes. Shortcuts are defined with an ampersand (‘&’) character. The
current selected menu line allows you to specify the options listed below.

Prompt for
Arguments

If enabled, a dialog box opens at the time you invoke the menu item that
allows you to specify the command line arguments for the user program.

Run Minimized Enable this option to execute the application with minimized window.
Command Program file that is executed with the selected menu item.
Initial Folder Current working folder for the application program. If this entry is empty,

µVision2 uses the base folder of the project file.
Arguments Command line arguments that are passed to the application program.

Getting Started and Creating Applications 73

 4

The output of command line based application programs is copied to a temporary
file. When the application execution completes the content of this temporary file
is listed in the Output Window – Build page.

74 Chapter 4. Creating Applications

4

Running PC-Lint

PC-Lint from Gimpel Software checks the syntax and semantics of C programs
across all modules of your application. PC-Lint flags possible bugs and
inconsistencies and locates unclear, erroneous, or non-sense C code. PC-Lint
may considerably reduce the debugging effort of your target application.

Install PC-Lint on your
PC and enter parameters
in the dialog Tools –
Setup PC Lint. The
example shows a typical
PC-Lint configuration.

To get correct output in
the Build page, you
should use the
configuration file that is
located in the folder
KEIL\C51\BIN.

After the setup of PC-Lint you may Lint your source code. Tools – Lint … runs
PC-Lint on the current in focus editor file. Tools – Lint All C Source Files runs
PC-Lint across all C source files of your project. The PC-Lint messages are
redirected to the Build – Output Window. A double click on a Lint message
line locates the editor to the source file position.

To get correct results in the Build – Output Window, PC-Lint needs the
following option lines in the configuration file:

-hsb_3 // 3 lines output, column below
-format="*** LINT: %(%f(%l) %)%t %n: %m" // Change message output format
-width(0,10) // Don't break lines

Getting Started and Creating Applications 75

 4

The configuration file C:\KEIL\C51\BIN\CO-KC51.LNT contains already these
lines. It is strongly recommended to use this configuration file, since it contains
also other PC-Lint options required for the Keil C51 Compiler.

Siemens Easy-Case

µVision2 provides a direct interface to Siemens Easy-Case. Easy-Case is a
graphic editor as well as a program documentation utility. You may use Easy-
Case to edit source code. Also some µVision2 debugger commands are available
within the Easy-Case environment.

Install Easy-Case: to use µVision2 debugger commands within Siemens Easy--
Case the configuration settings from the file C:\KEIL\UV2\UV2EASY-CPP.INI
should be added to the file EASY-CPP.INI that is stored in the WINDOWS system
directory. This may be done with any text editor or the DOS copy command:

C:\>CD C:\WINNT
C:\WINNT>COPY EASY-CPP.INI+C:\KEIL\UV2\UV2EASY-CPP.INI EASY-CPP.INI

In the µVision2 dialog
Tools – Setup Easy-Case
enter the path for EASY-
CPP.EXE. This completes
the configuration for
Siemens Easy-Case.

View Source Code with Easy-Case: with Tools – Start/Stop Easy-Case you
start Easy-Case. The menu item Tools – Show … opens the active µVison2
editor file at the current position. The Easy-Case menu µVision2 offers several
debug commands that allow program execution in the µVision2 debugger.

76 Chapter 4. Creating Applications

4

Using the SVCS Menu
µVision2 provides a configurable interface to Software Version Control Systems
(SVCS). Pre-configured template files are provided for: Intersolv PVCS,
Microsoft SourceSafe, and MKS Source Integrity.

Via the SVCS Menu you
call the command line
tools of your Version
Control System. The
configuration of the
SVCS menu is stored in
a Template File. This
menu is configured with
the dialog SVCS –
Customize SVCS
Menu…. The dialog
options are explained
below.

Dialog Item Description

Template File Name of the SVCS menu configuration file. It is recommended that all
members of the software team are using the same template file. Therefore
the template file should be copied to the file server.

Getting Started and Creating Applications 77

 4

User Name User name that should be used to log into the SVCS system. The user
name is passed with the %U file code in the argument line.

Database File name or path for the database used by the SVCS system. The
database string is passed with the %V file code in the argument line.

Menu Content Text shown in the SVCS menu. This line may contain key codes and file
codes. Shortcuts are defined with an ampersand (‘&’) character. The
selected menu line allows you to specify the options listed below.

Query for …
 Comment
 Revision
 CheckPoint

Allows you to ask for additional information when using the SVCS
command. A comment is copied into a temporary file that can be passed
with the file code %Q as argument to the SVCS command. Revision and
CheckPoint are passed as a string with %R and %C file code.

Run Minimized Enable this option to execute the application with minimized window.
Command Program file that is invoked when you click on the SVCS menu item.
Arguments Command line arguments that are passed to the SVCS program file.
Environment Environment variables that are set before execution of the SVCS program.

The output of command line SVCS application programs is copied to a
temporary file. When the SVCS command completes the content of this
temporary file is listed in the Output Window – Build page.

A sample SVCS menu is
shown on the right. A
selected file in the page
Project Window – Files
is the SVCS argument.
The target name selects
the *.UV2 project file.
The local copy of a
looked file is read-only
and gets a key symbol.

µVision2 projects are saved in two separate files. Project settings in *.UV2: this
file should be looked with the SVCS and is sufficient to re-build an application.
The local µVision2 configuration in *.OPT contains window positions and
debugger settings.

The following table lists typical SVCS menu items. Depending on your
configuration, additional or different items might be available. Include files may
be added to the project as document file to access them quickly with the SVCS.

SVCS Menu Item Description

Explorer Start the interactive SVCS explorer.
Check In Save the file in the SVCS database and make the local copy read-only.
Check Out Get the actual file version from the SVCS and allows modifications.

78 Chapter 4. Creating Applications

4

SVCS Menu Item Description

Undo Check Out Undo the check out of a file.
Put Current Version Save a local file in the SVCS database but still allow modifications to it.
Get Actual Version Get a current read-only copy of a file from the SVCS.
Add file to Project Add the file to the SVCS project.
Add file to Project Add the file to the SVCS project.
Differences, History Show SVCS information about the file.
Create Project Create a SVCS project with the same name as the local µVision2 project.

NOTES
The pre-configured *.SVCS files may be modified with a text editor to adapt
program paths and tool parameters.

Microsoft SourceSafe requires the command Set Current Project after you have
selected a new µVision2 project. Remove the SSUSER environment variable
from the configuration to use the login name of the workstation.

MKS Source Integrity is pre-configured to create a project database on a server
and a local sandbox workspace on the workstation.

Intersolv PVCS is not pre-configured for creating and maintaining projects.

Writing Optimum Code
Many configuration parameters have influence on the code quality of your 8051
application. Although, for most applications the default tool setting generates
very good code, you should be aware of the parameters that improve code
density and execution speed. The code optimization techniques are described in
this section.

Memory Models and Memory Types
The most significant impact on code size and execution speed has the memory
model. The memory model influences variable accesses. Refer to “Memory
Models” on page 35 for detailed information. The memory model is selected in
the Options for Target – Target dialog page.

Getting Started and Creating Applications 79

 4

Global Register Optimization

The Keil 8051 tools provide support for application wide register optimization
that is enabled in the Options for Target – C51 dialog with Global Register
Optimization. With the application wide register optimization, the C51
Compiler knows the registers used by external functions. Registers that are not
altered in external functions can be used to hold register variables. The code
generated by the C compiler needs less data and code space and executes faster.
To improve the register allocation, the µVision2 build process makes
automatically iterative re-translations of C source files.

In the following example input and output are external functions, which require
only a few registers.

With Global Register Optimization Without Global Register Optimization

 main () {
 unsigned char i;
 unsigned char a;
 while (1) {
 i = input (); /* get number of values */

?C0001:
LCALL input

;- 'i' assigned to 'R6' -
MOV R6,AR7

?C0001:
LCALL input
MOV DPTR,#i
MOV A,R7
MOV @DPTR,A

 do {
 a = input (); /* get input value */

?C0005:
LCALL input

;- 'a' assigned to 'R7' -
MOV R5,AR7

?C0005:
LCALL input
MOV DPTR,#a
MOV A,R7
MOVX @DPTR,A

 output (a); /* output value */
LCALL _output LCALL _output

 } while (--i); /* decrement values */
DJNZ R6,?C0005 MOV DPTR,#i

MOVX A,@DPTR
DEC A
MOVX @DPTR,A
JNZ ?C0005

 }
SJMP ?C0001 SJMP ?C0001

 }
RET RET

Code Size: 18 Bytes Code Size: 30 Bytes

80 Chapter 4. Creating Applications

4

Other C51 Compiler Directives
There are several other C51 directives that improve the code quality. These
directives are enabled in the Options – C51 dialog page. You can translate the C
modules in an application with different compiler settings. You may check the
code quality of different compiler settings in the listing file.

The following table describes the options of the C51 dialog page:

Dialog Item Description

Define outputs the C51 DEFINE directive to enter preprocessor symbols.
Undefine is only available in the Group and File Options dialog and allows you to

remove DEFINE symbols that are specified at the higher target or group
level.

Code Optimization
Level

specifies C51 OPTIMIZE level. Typical you will not alter the default. With
the highest level “9: Common block subroutine packing” the compiler
detects multiple instruction sequences and packs such code into
subroutines. While analyzing the code, the compiler also tries to replace
sequences with cheaper instructions. Since the compiler inserts sub-
routines and CALL instructions, the execution speed of the optimized code
might be slower. Typical this level is interesting to optimize the code
density.

Code Optimization
Emphasis

You can optimize for execution speed or code size. With “Favor Code
Size”, the C51 Compiler uses library calls instead of fast replacement code.

Global Register
Optimization

enables the “Global Register Optimization”. Refer to page 79 for details.

Getting Started and Creating Applications 81

 4

Dialog Item Description

Don't use absolute
register accesses

disables absolute register addressing for registers R0 through R7. The
code will be slightly longer, since C51 cannot use ARx symbols, i.e. in
PUSH or POP instructions and needs to insert replace code. However the
code will be independent of the selected register bank.

Warnings selects the C51 warninglevel. Warninglevel 0 disables all warnings.
Bits to round for float
compare

determines the number of bits to rounded before a floating-point compare is
executed.

Interrupt vectors at
address

instructs the C51 Compiler to generate interrupt vectors for interrupt
functions and specifies the base address for the interrupt vector table.

Keep Variables in
Order

tells the C51 Compiler to order the variables in memory according their
definition in the C source file. This option does not influence code quality.

Enable ANSI interger
promotion rules

expressions used in if statements are promoted from smaller types to
integer expressions before comparison. This gives typically longer code,
but is required to be ANSI compatible.

Misc Controls allows you to enter special C51 directives. You may need such options
when you are using very new 8051 devices that require special directives.

Compiler Control
String

displays the C51 Compiler invocation string. Allows you can verify the
compiler options currently for your source files.

Data Types
The 8051 CPU is an 8-bit microcontroller. Operations that use 8-bit types (like
char and unsigned char) are more efficient than operations that use int or long
types.

82 Chapter 4. Creating Applications

4

Tips and Tricks
The following section discusses advanced techniques you may use with the
µVision2 project manager. You will not need the following features very often,
but readers of this section get a better feeling for the µVision2 capabilities.

Importing Project Files from µVision Version 1
You can import project files from µVision1 with the following procedure:

1. Create a new µVision2 project file and select a CPU from the device database
as described on page 58. It is important to create the new µVision2 project
file in the existing µVision1 project folder.

2. Select the old µVision1 project file that exists in the project folder in the
dialog Project – Import µVision1 Project. This menu option is only
available, if the file list of the new µVision2 project file is empty.

3. This command imports the old µVision1 linker settings into the linker
dialogs. But, we recommend that you are using the µVision2 Options for
Target – Target dialog to define the memory structure of your target
hardware. Once you have done that, you should enable Use Memory Layout
from Target Dialog in the Options for Target – L51 Locate dialog and
remove the settings for User Classes and User Sections in this dialog.

4. Check carefully if all settings are copied correctly to the new µVision2
project file.

5. You may now create file groups in the new µVision2 project as described
under “Project Targets and File Groups” on page 64. Then you can Drag &
Drop files into the new file groups.

NOTE
It is not possible to make a 100% conversion from µVision1 project files since
µVision2 differs in many aspects from the previous version. After you have
imported your µVision1 check carefully if the tool settings are converted
correctly. Some µVision1 project settings, for example user translator and
library module lists are not converted to the µVision2 project. Also the dScope
Debugger settings cannot be copied to the µVision2 project file.

Getting Started and Creating Applications 83

 4

Running External Tools after the Build Process
The Options for Target – Output dialog allows you to enter up to two users
programs that are started after a successful build process. Using a key sequence
you may pass arguments from the µVision2 project manager to these user
programs. Refer to “

You may use the browser information within an editor
window. Select the item that you want to search for and
open the local menu with a right mouse click or use the
following keyboard shortcuts:

Shortcut Description

F12 Goto Definition; place cursor to the symbol definition

Shift+F12 Goto Reference; place cursor to a symbol reference

Ctrl+Num+ Goto Next Reference or Definition

Ctrl+Num– Goto Previous Reference or Definition

Key Sequence for Tool Parameters” on page 71.

84 Chapter 4. Creating Applications

4

In the example above the User Program #1 is called with the Hex Output file
and the full path specification i.e. C:\MYPROJECT\PROJECT1.HEX. The User
program #2 will get only the name of the linker output file PROJECT1 and as a
parameter -p the path specification to the project C:\MYPROJECT. You should
enclose the key sequence with quotes (“”) if you use folder names with special
characters, i.e. space, ~, #.

Specifying Separate Folders for Listing Files
and Object Files
You can direct the output files of the tools to different folders:
� The Options for Target – Output dialog lets you Select a Folder for

Objects. When you use a separate folder for the object files of each project
target, µVision2 has still valid object files of the previous build process.
Even when you change your project target, a Build Target command will
just re-translate the modified files.

� The Options for Target – Listing dialog provides the same functionality for
all listing files with the Select Folder for List Files button.

Using Microcontrollers That Are Not Listed in
the µVision2 Device Database
The µVision2 device database contains all 8051 standard products. However,
there are some custom devices and there will be future devices that are currently
not part of this database. If you need to work with an unlisted CPU you have
two alternatives:
� Select a device listed under the rubric Generic. The 8051 (all Variants)

device allows you to configure all tool parameters and therefore supports all
CPU variants. Specify the on-chip memory as External Memory in the
Options for Target – Target dialog.

� You may enter a new CPU into the µVision2 device database. Open the
dialog File – Device Database and select a CPU that comes close to the
device you want to use and modify the parameters. The CPU setting in the
Options box defines the basic the tool settings. The parameters are described
in the following table.

Getting Started and Creating Applications 85

 4

Parameter Specifies …

IRAM (range) Address location of the on-chip IRAM.

XRAM (range) Address location of the on-chip XRAM.

IROM (range) Address range of the on-chip (flash) ROM. The start address must be 0.

CLOCK (val) Default CPU clock used when you select the device.

MODA2 Dual DPTR for Atmel device variants.

MODDP2 Dual DPTR for Dallas device variants.

MODDPX Enables extended 24-bit DPTR register (i.e. for ADuC812).

MODP2 Dual DPTR for Philips and Temic device variants.

MOD517DP Multiple DPTR for Infineon C500 device variants.

MOD517AU Arithmetic Unit for Infineon C500 device variants.

MOD_CONT Enables Dallas 390 Contigious Mode support.

MX Enables Philips 80C51MX support.
Other Option variables specify CPU data books and µVision2 Debugging DLLs.

Leave this variables unchanged when adding a new device to the database.

Creating a Library File
Select Create Library in the dialog Options for Target – Output. µVision2
will call the Library Manager instead of the Linker/Locater. Since the code in
the Library will be not linked and located, the entries in the L51 Locate and L51
Misc options page are ignored. Also the CPU and memory settings in the
Target page are not relevant. Select a CPU listed under the rubric Generic in
the device database, if you plan to use your code on different 8051 directives.

Copying Tool Settings to a New Target
Select Copy all Settings from Current Target when you add a new target in
the Project – Targets, Groups, Files… dialog. Copy tool settings from an
existing target to the current target in following way:

1. Use Remove Target to delete the current target.

2. Select the target with the tool settings you want to copy with Set as Current
Target.

3. Add the again removed target with Copy all Settings from Current Target
enabled.

86 Chapter 4. Creating Applications

4

Locating Segments to Absolute Memory
Locations
Sometimes, it is required to locate sections to specific memory addresses. In the
following example, the structure called alarm_control should be located at
address 0xC000. This structure is defined in a source file named ALMCTRL.C
and this module contains only the declaration for this structure.

:
:
struct alarm_st {
unsigned int alarm_number;
unsigned char enable flag;
unsigned int time_delay;
unsigned char status;

};

struct alarm_st xdata alarm_control;
:
:

The C51 Compiler generates an object file for ALMCTRL.C and includes a
segment for variables in the xdata memory area. The variable alarm_control is
the located in the segment ?XD?ALMCTRL. µVision2 allows you to specify the
base address of any section under Options for Target – L51 Locate – Users
Sections. In the following example linker/locater will locate the section named
?XD?ALMCTRL at address 0xC000 in the physical xdata memory.

NOTE
C51 offers you _at_ directive and absolute memory access macros to address
absolute memory locations. For more information refer to the “C51 User's
Guide”, Chapter 6.

Getting Started and Creating Applications 87

 4

File and Group Specific Options – Properties
Dialog
µVision2 allows you to set file and group specific options via the local menu in
the Project Window – Files page as follows: select a file or group, click with
the right mouse key and choose Options for …. Then you can review
information or set special options for the item selected. The dialog pages have
tri-state controls. If a selection is gray or contains <default> the setting from the
higher group or target level is active. The following table describes the options
of the Properties dialog page:

Dialog Item Description

Path, Type, Size
Last Change

Outputs information about the file selected.

Include in Target
Build

Disable this option to exclude the group or source file in this target. If this
option is not set, µVision2 will not translate and not link the selected item
into the current targets. This is useful for configuration files, when you are
using the project file for several different hardware systems.

Always Build Enable this option to re-translate a source module with every build process,
regardless of modifications in the source file. This is useful when a file
contains __DATE__ and __TIME__ macros that are used to stored version
information in the application program.

Generate Assembler
SRC File

Instructs the C51 Compiler to generate an assembler source file from this C
module. Typical this option is used when the C source file contains
#pragma asm / endasm sections.

Assemble SRC File Use this option together with the Generate Assembler SRC File to
translate the assembler source code generated by C51 into an object file
that can be linked to the application.

88 Chapter 4. Creating Applications

4

Dialog Item Description

Link Publics Only This option is only available with Lx51 and instructs the linker to include only
PUBLIC symbols from that module. Typical this option when you want to
use entry or variable addresses from a different application. It refers in the
most cases to an absolute object file that may be part of the project.

Stop on Exit Code Specify an exit code when the build process should be stop on translator
messages. By default, µVision2 translates all files in a build process
regardless of error or warning messages.

Select Modules to
Always Include

Allows you to always include specific modules from a Library. Refer to
“Always Including Specific Library Modules” on page 89 for more
information.

Custom Arguments This line is required if your project contains files that need a different
translator. Refer to “Using a Custom Translator” on page 90 for more
information.

In this example we have specified for FILE1.C that the build process is stopped
when there are translator warnings and that this file is translated with each build
process regardless of modifications.

Getting Started and Creating Applications 89

 4

Translating a C Module with asm / endasm Sections

If you use within your C source module assembler statements, the C51 Compiler
requires you to generate an assembler source file and translate this assembler
source file. In this case enable the options Generate Assembler SRC File and
Assembler SRC File in the properties dialog.

NOTE
Check if you can use build-in intrinsic functions to replace the assembler code.
In general it better to avoid assembler code sections since you C source code
will not be portable to other platforms. The C51 Compiler offers you many
intrinsic functions that allow you to access all special peripherals. Typically it
is not required to insert assembler instructions into C source code.

Always Including Specific Library Modules

The Properties dialog page allows you to specify library modules that should be
always included in a project. This is sometimes required when you generate a
boot portion of an application that should contain generic routines that are used
from program parts that are reloaded later. In this case add the library that
contains the desired object modules, open the Options – Properties dialog via
the local menu in the Project Window – Files and Select Modules to Always
Include.

Just enable the modules you
want to include in any case into
your target application.

90 Chapter 4. Creating Applications

4

Using a Custom Translator
If you add a file with unknown file extension to a project, µVision2 requires you
to specify the file type for this file. You may select Custom File and use a
custom translator to process this file. The custom translator is specified along
with its command line in the Custom Arguments line of the Options –
Properties dialog. Typical the custom translator will generate a source file from
the custom file. You need to add this source file to your project to and use A51
or C51 to generate an object file that can be linked to your application.

In this example we have specified for CUSTOM.PRE that the program
C:\UTILITIES\PRETRANS.EXE is used with the parameter –X to translate the file.
Note that we have used also the Always Build option to ensure that the file is
translated with every build process.

Getting Started and Creating Applications 91

 4

Using Intel PL/M-51
If you still have Intel PL/M-51 source code that
you want to include into your µVision2 project,
you may add these source files as custom
translated files in the µVision2 project tree. In
addition you must insert also the *.OBJ files that
are created by PL/M51 and the Intel PLM51.LIB.

The options for the PL/M-51 compiler are set in
the Options – Properties dialog. This dialog
opens with a right mouse click on the source file.

Options for the Intel PL/M-51 Compiler are entered in the Options - Properties dialog

under Custom Arguments.

92 Chapter 4. Creating Applications

4

File Extensions
The dialog Project – File Extensions allows you to set the default file extension
for a project. You can enter several extensions when you separate them with
semi-colon characters. The file extensions are project specific.

Different Compiler and Assembler Settings
Via the local menu in the Project Window – Files you may set different options
for a file group or even a single file. The dialog pages have tri-state controls; if
an option is grayed the setting from higher level is taken. You can specify with
this technique different tools for a complete file group and still change settings
on a single source file within this file group.

Version and Serial Number Information
Detailed tool chain information is listed when you open Help – About. Please
use this information whenever you send us problem reports.

Getting Started and Creating Applications 93

 5

Chapter 5. Testing Programs

µVision2 Debugger
You can use µVision2 Debugger to test the applications you develop using the
C51 Compiler and A51 macro assembler. The µVision2 Debugger offers two
operating modes that are selected in the Options for Target – Debug dialog:

Use Simulator allows you to configure the µVision2 Debugger as software-only
product that simulates most features of the 8051 microcontroller family without
actually having target hardware. You can test and debug your embedded
application before the hardware is ready. µVision2 simulates a wide variety of
peripherals including the serial port, external I/O, and timers. The peripheral set
is selected when you select a CPU from the device database for your target.

Use Advance GDI drivers, like Keil Monitor 51 interface. With the Advanced
GDI interface you may connect the environment directly to emulators or the Keil
Monitor program. For more information refer to “Chapter 11. Using
Monitor-51” on page 199.

94 Chapter 5. Testing Programs

5

CPU Simulation
µVision2 simulates up to 16 Mbytes of memory from which areas can be
mapped for read, write, or code execution access. The µVision2 simulator traps
and reports illegal memory accesses.

In addition to memory mapping, the simulator also provides support for the
integrated peripherals of the various 8051 derivatives. The on-chip peripherals
of the CPU you have selected are configured from the Device Database selection
you have made when you create your project target. Refer to page 58 for more
information about selecting a device.

You may select and display the on-chip peripheral components using the Debug
menu. You can also change the aspects of each peripheral using the controls in
the dialog boxes.

 Start Debugging
You start the debug mode of µVision2 with the Debug – Start/Stop Debug
Session command. Depending on the Options for Target – Debug
configuration, µVision2 will load the application program and run the startup
code. For information about the configuration of the µVision2 debugger refer to
page 101. µVision2 saves the editor screen layout and restores the screen layout
of the last debug session. If the program execution stops, µVision2 opens an
editor window with the source text or shows CPU instructions in the disassembly
window. The next executable statement is marked with a yellow arrow.

During debugging, most editor features are still available. For example, you can
use the find command or correct program errors. Program source text of your
application is shown in the same windows. The µVision2 debug mode differs
from the edit mode in the following aspects:
� The “Debug Menu and Debug Commands” described on page 28 are

available. The additional debug windows are discussed in the following.
� The project structure or tool parameters cannot be modified. All build

commands are disabled.

Getting Started and Creating Applications 95

 5

 Disassembly Window
The Disassembly window shows your target program as mixed source and
assembly program or just assembly code. A trace history of previously executed
instructions may be displayed with Debug – View Trace Records. To enable
the trace history, set Debug – Enable/Disable Trace Recording.

If you select the Disassembly Window as the active window all program step
commands work on CPU instruction level rather than program source lines. You
can select a text line and set or modify code breakpoints using toolbar buttons or
the context menu commands.

You may use the dialog Debug – Inline Assembly… to modify the CPU
instructions. That allows you to correct mistakes or to make temporary changes
to the target program you are debugging.

96 Chapter 5. Testing Programs

5

 Breakpoints
µVision2 lets you define breakpoints in several different ways. You may already
set Execution Breaks during editing of your source text, even before the
program code is translated. Breakpoints can be defined and modified in the
following ways:
� With the File Toolbar buttons. Just select the code line in the Editor or

Disassembly window and click on the breakpoint buttons.
� With the breakpoint commands in the local menu. The local menu opens

with a right mouse click on the code line in the Editor or Disassembly
window.

� The Debug – Breakpoints… dialog lets you review, define and modify
breakpoint settings. This dialog allows you to define also access breakpoints
with different attributes. Refer to the examples below.

� In the Output Window – Command page you can use the BreakSet,
BreakKill, BreakList, BreakEnable, and BreakDisable commands.

The Breakpoint dialog lets you view and modify breakpoints. You can quickly
disable or enable the breakpoints with a mouse click on the check box in the
Current Breakpoints list. A double click in the Current Breakpoints list
allows you to modify the selected break definition.

Getting Started and Creating Applications 97

 5

You define a breakpoint by entering an Expression in the Breakpoint dialog.
Depending on the expression one of the following breakpoint types is defined:
� When the expression is a code address, an Execution Break (E) is defined

that becomes active when the specified code address is reached. The code
address must refer to the first byte of a CPU instruction.

� When a memory Access (Read, Write or both) is selected an Access Break
(A) is defined that becomes active when the specified memory access occurs.
You can specify the size of the memory access window in bytes or object size
of the expression. Expressions for an Access Break must reduce to a
memory address and memory type. The operators (&, &&, <. <=. >, >=, = =,
and !=) can be used to compare the variable values before the Access Break
halts program execution or executes the Command.

� When the expression cannot be reduced to an address a Conditional Break
(C) is defined that becomes active when the specified conditional expression
becomes true. The conditional expression is recalculated after each CPU
instruction, therefore the program execution speed may slow down
considerably.

When you specify a Command for a breakpoint, µVision2 executes the
command and resumes executing your target program. The command you
specify here may be a µVision2 debug or signal function. To halt program
execution in a µVision2 function, set the _break_ system variable. For more
information refer to “System Variables” on page 113.

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint is triggered.

Breakpoint Examples:

The following description explains the definitions in the Breakpoint dialog
shown above. The Current Breakpoints list summarizes the breakpoint type
and the physical address along with the Expression, Command and Count.

Expression: \Measure\143

Execution Break (E) that halts when the target program reaches the code line
143 in the module MEASURE.

Expression: main

Execution Break (E) that halts when the target program reaches the main
function.

98 Chapter 5. Testing Programs

5

Expression: timer0 Command: printf ("Timer0 Interrupt occurred\n")

Execution Break (E) that prints the text "Timer0 Interrupt occurred" in the
Output Window – Command page when the target program reaches the timer0
function. This breakpoint is disable in the above Breakpoint dialog.

Expression: save_measurements Count: 10

Execution Break (E) that halts when the target program reaches the function
save_measurements the 10th time.

Expression: mcommand == 1

Contional Break (C) that halts program execution when the expression
mcommand = = 1 becomes true. This breakpoint is disable in the above
Breakpoint dialog.

Expression: save_record[10] Access: Read Write Size: 3 Objects

Access Break (A) that halts program execution when an read or write access
occurs to save_record[10] and the following 2 objects. Since save_record is a
structure with size 16 bytes this break defines an access region of 48 bytes.

Expression: sindex == 10 Access: Write

Access Break (A) that halts program execution when the value 10 is written to
the variable sindex.

Expression: measure_display Command: MyStatus ()

Execution Break (E) that executes the µVision2 debug function MyStatus when
the target program reaches the function measure_display. The target program
execution resumes after the debug function MyStatus has been executed.

Getting Started and Creating Applications 99

 5

 Target Program Execution
µVision2 lets execute your application program in several different ways:
� With the Debug Toolbar buttons and the “Debug Menu and Debug

Commands” as described on page 28.
� With the Run till Cursor line command in the local menu. The local menu

opens with a right mouse click on the code line in the Editor or Disassembly
window.

� In the Output Window – Command page you can use the Go, Ostep, Pstep,
and Tstep commands.

 Watch Window
The Watch window lets you view and modify program variables and lists the
current function call nesting. The contents of the Watch Window are
automatically updated whenever program execution stops. You can enable View
– Periodic Window Update to update variable values while a target program is
running.

The Locals page shows all local function variables of the current function. The
Watch pages display user-specify program variables. You add variables in three
different ways:
� Select the text <enter here> with a mouse click and wait a second. Another

mouse click enters edit mode that allows you to add variables. In the same
way you can modify variable values.

� In an editor window open the context menu with a right mouse click and use
Add to Watch Window. µVision2 automatically selects the variable name

100 Chapter 5. Testing Programs

5

under the cursor position, alternatively you may mark an expression before
using that command.

� In the Output Window – Command page you can use the WatchSet
command to enter variable names.

To remove a variable, click on the line and press the Delete key.

The current function call nesting is shown in the Call Stack page. You can
double click on a line to show the invocation an editor window.

 CPU Registers
The CPU registers are displayed and Project Window – Regs page and can be
modified in the same way as variables in the Watch Window.

 Memory Window
The Memory window displays the contents of the various memory areas. Up to
four different areas can be review in the different pages. The context menu
allows you to select the output format.

In the Address field of the Memory Window, you can enter any expression that
evaluates to a start address of the area you want to display. To change the
memory contents, double click on a value. This opens an edit box that allows
you to enter new memory values. To update the memory window while a target
program is running enable View – Periodic Window Update.

Getting Started and Creating Applications 101

 5

 Toolbox
The Toolbox contains user-configurable buttons. Click on a Toolbox button to
execute the associated command. Toolbox buttons may be executed at any time,
even while running the test program.

Toolbox buttons are defined in the Output
Window – Command page with the DEFINE
BUTTON command. The general syntax is:
>DEFINE BUTTON "button_label", "command"

button_label is the name to display on the button
in the Toolbox.

command is the µVision2 command to
execute when the button is pressed.

The following examples show the define commands used to create the buttons in
the Toolbox shown above:

>DEFINE BUTTON "Decimal Output", "radix=0x0A"
>DEFINE BUTTON "Hex Output", "radix=0x10"
>DEFINE BUTTON "My Status Info", "MyStatus ()" /* call debug function */
>DEFINE BUTTON "Analog0..5V", "analog0 ()" /* call signal function */
>DEFINE BUTTON "Show R15", "printf (\"R15=%04XH\\n\")"

NOTE
The printf command defined in the last button definition shown above introduces
nested strings. The double quote (") and backslash (\) characters of the format
string must be escaped with \ to avoid syntax errors.

You may remove a Toolbox button with the KILL BUTTON command and the
button number. For example:

>Kill Button 5 /* Remove Show R15 button */

NOTE
The Update Windows button in the Toolbox is created automatically and cannot
be removed. The Update Windows button updates several debug windows
during program execution.

102 Chapter 5. Testing Programs

5

 Set Debug Options
The dialog Options for Target - Debug configures the µVision2 debugger.

The following table describes the options of the Debug dialog page:

Dialog Item Description

Use Simulator Select the µVision2 Simulator as Debug engine.
Use Keil Monitor-51
Driver

Select the Advanced GDI driver to connect to your debug hardware. The
Keil Monitor-51 Driver allows you to connect a target board with the Keil
Monitor. There are µVision2 emulator and OCDS drivers in preparation.

Settings Opens the configuration dialog of the selected Advanced GDI driver.
Other dialog options are available separately for the Simulator and Advanced GDI section.
Load Application at
Startup

Enable this option to load your target application automatically when you
start the µVision2 debugger.

Go till main () Start program execution till the main label when you start the debugger.
Initialization File Process the specified file as command input when starting a debug

session.
Breakpoints Restore breakpoint settings from the previous debug session.
Toolbox Restore toolbox buttons from the previous debug session.
Watchpoints & PA Restore Watchpoint and Performance Analyzer settings from the previous

debug session.
Memory Display Restore the memory display settings from the previous debug session.
CPU DLL
Driver DLL
Parameter

Configures the internal µVision2 debug DLLs. The settings are taken from
the device database. Please do not modify the DLL or DLL parameters.

Getting Started and Creating Applications 103

 5

 Serial Window
µVision2 provides two Serial Windows for serial input and output. Serial data
output from the simulated CPU is displayed in this window. Characters you type
in the Serial Window are input to the simulated CPU.

This lets you simulate the CPU’s UART without the need for external hardware.
The serial output may be also assigned to a PC COM port using the ASSIGN
command in the Output Window – Command page.

 Performance Analyzer
The µVision2 Performance Analyzer displays the execution time recorded for
functions and address ranges you specify.

104 Chapter 5. Testing Programs

5

The <unspecified> address range is automatically generated. It shows the
amount of time spent executing code that is not included in the specified
functions or address ranges.

Results display as bar graphs. Information such as invocation count, minimum
time, maximum time, and average time is displayed for the selected function or
address range. Each of these statistics is described in the following table.

Label Description

min time The minimum time spent in the selected address range or function.

max time The maximum time spent in the selected address range or function.

avg time The average time spent in the selected address range or function.

total time The total time spent in the selected address range or function.

% The percent of the total time spent in the selected address range or function.

count The total number of times the selected address range or function was
executed.

To setup the Performance Analyzer use the menu command Debug –
Performance Analyzer. You may enter the PA command in the command
window to setup ranges or print results.

 Code Coverage
The µVision2 debugger provides a code coverage function that marks the code
that has been executed. In the debug window, lines of code that have been
executed are market green in the left column. You can use this feature when you
test your embedded application to determine the sections of code that have not
yet been exercised.

Getting Started and Creating Applications 105

 5

The Code Coverage dialog
provides information and
statistics. You can output
this information in the
Output Window –
Command page using the
COVERAGE command.

Memory Map
The Memory Map dialog box lets you specify the memory areas your target
program uses for data storage and program execution. You may also configure
the target program’s memory map using the MAP command.

When you load a target application, µVision2 automatically maps all address
ranges of your application. Typically it is not required to map additional address
ranges. You need to map only memory areas that are accessed without explicit
variable declarations, i.e. memory mapped I/O space.

The dialog opens via the menu
Debug – Memory Map…

As your target program runs,
µVision2 uses the memory map to
verify that your program does not
access invalid memory areas. For
each memory range, you may
specify the access method: Read,
Write, Execute, or a combination.

106 Chapter 5. Testing Programs

5

View – Symbols Window
The Symbols Window displays public symbols, local symbols, line number
information, and CPU-specific SFRs defined in the currently loaded application.

You may select the symbol type and filter symbols displayed.

Options Description

Mode select PUBLIC, LOCALS or LINE. Public symbols have application-wide
scope. The scope of local symbols is limited to a module or function. Lines
refer to the line number information of the source text.

Current Module select the source module where information should be displayed.
Mask specify a mask that is used to match symbol names. The mask may consist

of alphanumeric characters plus mask characters:
 # matches a digit (0 – 9)
 $ matches any character
 * matches zero or more characters.

Apply applies the mask and displays the update symbol list.

The following table provides a few examples of masks for symbol name.

Mask Matches symbol names …

* Matches any symbol. This is the default mask in the Symbol Browser.

… that contain one digit in any position.

_a$#* … with an underline, followed by the letter a, followed by any character, followed by a
digit, ending with zero or more characters. For example, _ab1 or _a10value.

_*ABC … with an underline, followed by zero or more characters, followed by ABC.

Getting Started and Creating Applications 107

 5

Debug Commands
You may interact with the µVision2 debugger by entering commands in the
Output Window – Command page. In the following tables all available
µVision2 debug commands are listed in categories. Use the underlined
characters in the command names to enter commands. For example, the
WATCHSET command must be entered as WS.

During command entry, the syntax generator displays possible commands,
options and parameters. As you enter commands µVision2 reduces the list of
likely commands to coincide with the characters you type.

If you type B, the syntax
generator reduces the
commands listed.

Available command options
are listed if the command is
clear.

The syntax generator leads
you through the command
entry and helps you to avoid
errors.

108 Chapter 5. Testing Programs

5

Memory Commands
The following memory commands let you display and alter memory contents.

Command Description

ASM Assembles in-line code.

DEFINE Defines typed symbols that you may use with µVision2 debug functions.

DISPLAY Display the contents of memory.

ENTER Enters values into a specified memory area.

EVALUATE Evaluates an expression and outputs the results.

MAP Specifies access parameters for memory areas.

UNASSEMBLE Disassembles program memory.

WATCHSET Adds a watch variable to the Watch window.

Program Execution Commands
Program commands let you run code and step through your program one
instruction at a time.

Command Description

Esc Stops program execution.

GO Starts program execution.

PSTEP Steps over instructions but does not step into procedures or functions.

OSTEP Steps out of the current function.

TSTEP Steps over instructions and into functions.

Breakpoint Commands
µVision2 provides breakpoints you may use to conditionally halt the execution
of your target program. Breakpoints can be set on read operations, write
operations and execution operations.

Command Description

BREAKDISABLE Disables one or more breakpoints.

BREAKENABLE Enables one or more breakpoints.

BREAKKILL Removes one or more breakpoints from the breakpoint list.

BREAKLIST Lists the current breakpoints.

BREAKSET Adds a breakpoint expression to the list of breakpoints.

Getting Started and Creating Applications 109

 5

General Commands
The following general commands do not belong in any other particular command
group. They are included to make debugging easier and more convenient.

Command Description

ASSIGN Assigns input and output sources for the Serial window.

COVERAGE List code coverage statistics.

DEFINE BUTTON Creates a Toolbox button.

DIR Generates a directory of symbol names.

EXIT Exits the µVision2 debug mode.

INCLUDE Reads and executes the commands in a command file.

KILL Deletes µVision2 debug functions and Toolbox buttons.

LOAD Loads CPU drivers, object modules, and HEX files.

LOG Creates log files, queries log status, and closes log files for the Debug
window.

MODE Sets the baud rate, parity, and number of stop bits for PC COM ports.

PerformanceAnalyze Setup the performance analyzer or list PA information.

RESET Resets CPU, memory map assignments, Performance Analyzer or
predefined variables.

SAVE Saves a memory range in an Intel HEX386 file.

SCOPE Displays address assignments of modules and functions of a target
program.

SET Sets the string value for predefined variable.

SETMODULE Assigns a source file to a module.

SIGNAL Displays signal function status and removes active signal functions.

SLOG Creates log files, queries log status, and closes log files for the Serial
window.

You can interactively display and change variables, registers, and memory
locations from the command window. For example, you can type the following
text commands at the command prompt:

Text Effect

MDH Display the MDH register.
R7 = 12 Assign the value 12 to register R7.
time.hour Displays the member hour of the time structure.
time.hour++ Increments the member hour of the time structure.
index = 0 Assigns the value 0 to index.

110 Chapter 5. Testing Programs

5

Expressions
Many debug commands accept numeric expressions as parameters. A numeric
expression is a number or a complex expressions that contains numbers, debug
objects, or operands. An expression may consist of any of the following
components.

Component Description

Bit Addresses Bit addresses reference bit-addressable data memory.

Constants Constants are fixed numeric values or character strings.

Line Numbers Line numbers reference code addresses of executable programs. When
you compile or assemble a program, the compiler and assembler
include line number information in the generated object module.

Operators Operators include +, -, *, and /. Operators may be used to combine
subexpressions into a single expression. You may use all operators that
are available in the C programming language.

Program Variables
(Symbols)

Program variables are those variables in your target program. They are
often called symbols or symbolic names.

System Variables System variables alter or affect the way µVision2 operates.

Type Specifications Type specifications let you specify the data type of an expression or
subexpression.

Getting Started and Creating Applications 111

 5

Constants
The µVision2 accepts decimal constants, HEX constants, octal constants, binary
constants, floating-point constants, character constants, and string constants.

Binary, Decimal, HEX, and Octal Constants

By default, numeric constants are decimal or base ten numbers. When you enter
10, this is the number ten and not the HEX value 10h. The following table shows
the prefixes and suffixes that are required to enter constants in base 2 (binary),
base 8 (octal), base 10 (decimal), and base 16 (HEX).

Base Prefix Suffix Example

Binary: None Y or y 11111111Y
Decimal: None T or none 1234T or 1234
Hexadecimal: 0x or 0X H or h 1234H or 0x1234
Octal: None Q, q, O, or o 777q or 777Q or 777o

Following are a few points to note about numeric constants.

� Numbers may be grouped with the dollar sign character (“$”) to make them
easier to read. For example, 1111$1111y is the same as 11111111y.

� HEX constants must begin prefixed with a leading zero when the first digit in
the constant is A-F.

� By default, numeric constants are 16-bit values. They may be followed with
an L to make them long, 32-bit values. For example: 0x1234L, 1234L, 1255HL.

� When a number is entered that is larger than the range of a 16-bit integer , the
number is promoted automatically to a 32-bit integer.

112 Chapter 5. Testing Programs

5

Floating-Point Constants

Floating-point constants are entered in one of the following formats.

number . number
number e�+|-� number

number . number �e�+|-� number�

For example, 4.12, 0.1e3, and 12.12e–5. In contrast with the C programming
language, floating-point numbers must have a digit before the decimal point. For
example, .12 is not allowed. It must be entered as 0.12.

Character Constants

The rules of the C programming language for character constants apply to the
µVision2 debugger. For example, the following are all valid character constants.

'a', '1', '\n', '\v', '\x0FE', '\015'

Also escape sequences are supported as listed in the following table:

Sequence Description Sequence Description

\\ Backslash character (“\”). \n Newline.

\" Double quote. \r Carriage return.

\' Single quote. \t Tab.

\a Alert, bell. \0nn Octal constant.

\b Backspace. \Xnnn HEX constant.

\f Form feed.

Getting Started and Creating Applications 113

 5

String Constants

The rules of the C programming language for string constants also apply to
µVision2. For example:

"string\x007\n" "value of %s = %04XH\n"

Nested strings may be required in some cases. For example, double quotes for a
nested string must be escaped. For example:

"printf (\"hello world!\n\")"

In contrast with the C programming language, successive strings are not
concatenated into a single string. For example, "string1+" "string2" is not
combined into a single string.

System Variables
System variables allow access to specific functions and may be used anywhere a
program variable or other expression is used. The following table lists the
available system variables, the data types, and their uses.

Variable Type Description

$ unsigned long Represents the program counter. You may use $ to display and
change the program counter. For example,
 $ = C:0x4000
sets the program counter to address C:0x4000.

break unsigned int Allows you to stop executing the target program. When you set
break to a non-zero value, µVision2 halts target program
execution. You may use this variable in user and signal functions to
halt program execution. Refer to “Chapter 6. µVision2 Debug
Functions” on page 131 for more information.

iip unsigned char Indicates the number of interrupts that are currently nested. Debug
functions may use this system variable to determine in an interrupt is
currently in process.

states unsigned long Current value of the CPU instruction state counter; starts counting
from 0 when your target program begins execution and increases for
each instruction that is executed.
NOTE: states is a read-only variable.

itrace unsigned int Indicates whether or not trace recording is performed during target
program execution. When itrace is 0, no trace recording is
performed. When itrace has a non-zero value, trace information is
recorded. Refer to page 95 for more information.

radix unsigned int Determines the base used for numeric values displayed. radix may
be 10 or 16. The default setting is 16 for HEX output.

114 Chapter 5. Testing Programs

5

On-chip Peripheral Symbols
µVision2 automatically defines a number of symbols depending on the CPU you
have selected for your project. There are two types of symbols that are defined:
special function registers (SFRs) and CPU pin registers (VTREGs).

Special Function Registers (SFRs)

µVision2 supports all special function registers of the microcontroller you have
selected. Special function registers have an associated address and may be used
in expressions.

CPU Pin Registers (VTREGs)

CPU pin registers, or VTREGs, let you use the CPU’s simulated pins for input
and output. VTREGs are not public symbols nor do they reside in a memory
space of the CPU. They may be used in expressions, but their values and
utilization are CPU dependent. VTREGs provide a way to specify signals
coming into the CPU from a simulated piece of hardware. You can list these
symbols with the DIR VTREG command.

The following table describes the VTREG symbols. The VTREG symbols that
are actually available depend on the selected CPU.

VTREG Description

AINx An analog input pin on the chip. Your target program may read values you write to
AINx VTREGs.

CLOCK The internal CPU clock frequency; specifies the number of instruction states executed
within one second in the target CPU. The system variable states and the VTREG
CLOCK are used to calculate the CPU execution time in seconds. CLOCK is read-
only and derived from the XTAL frequency entry in the Options – Target dialog.

PORTx A group of I/O pins for a port on the chip. For example, PORT2 refers to all 8 or 16
pins of P2. These registers allow you to simulate port I/O.

SxIN The input buffer of serial interface x. You may write 8-bit or 9-bit values to SxIN.
These are read by your target program. You may read SxIN to determine when the
input buffer is ready for another character. The value 0xFFFF signals that the previous
value is completely processed and a new value may be written.

SxOUT The output buffer of serial interface x. µVision2 copies 8-bit or 9-bit values (as
programmed) to the SxOUT VTREG.

SxTIME Defines the baudrate timing of the serial interface x. When SxTIME is 1, µVision2
simulates the timing of the serial interface using the programmed baudrate. When
SxTIME is 0 (the default value), the programmed baudrate timing is ignored and serial
transmission time is instantaneous.

XTAL The XTAL frequency of the simulated CPU as defined in the Options – Target dialog.

Getting Started and Creating Applications 115

 5

NOTE
You may use the VTREGs to simulate external input and output including
interfacing to internal peripherals like interrupts and timers. For example, if
you toggle bit 2 of PORT3 (on the 8051 drivers), the CPU driver simulates
external interrupt 0.

For the C517 CPU the following VTREG symbols for the on-chip peripheral
registers are available:

CPU-pin Symbol Description

AIN0 Analog input line AIN0 (floating-point value)

AIN1 Analog input line AIN1 (floating-point value)

AIN2 Analog input line AIN2 (floating-point value)

AIN3 Analog input line AIN3 (floating-point value)

AIN4 Analog input line AIN4 (floating-point value)

AIN5 Analog input line AIN5 (floating-point value)

AIN6 Analog input line AIN6 (floating-point value)

AIN7 Analog input line AIN7 (floating-point value)

AIN8 Analog input line AIN8 (floating-point value)

AIN9 Analog input line AIN9 (floating-point value)

AIN10 Analog input line AIN10 (floating-point value)

AIN11 Analog input line AIN11 (floating-point value)

CLOCK Internal CPU clock frequency for instruction execution

PORT0 Digital I/O lines of PORT 0 (8-bit)

PORT1 Digital I/O lines of PORT 1 (8-bit)

PORT2 Digital I/O lines of PORT 2 (8-bit)

PORT3 Digital I/O lines of PORT 3 (8-bit)

PORT4 Digital I/O lines of PORT 4 (8-bit)

PORT5 Digital I/O lines of PORT 5 (8-bit)

PORT6 Digital I/O lines of PORT 6 (8-bit)

PORT7 Digital I/O lines of PORT 7 (8-bit)

PORT8 Digital I/O lines of PORT 8 (8-bit)

S0IN Serial input for SERIAL CHANNEL 0 (9-bit)

S0OUT Serial output for SERIAL CHANNEL 0 (9-bit)

S1IN Serial input for SERIAL CHANNEL 1 (9-bit)

S1OUT Serial output for SERIAL CHANNEL 1 (9-bit)

STIME Serial timing enable

VAGND Analog reference voltage VAGND (floating-point value)

VAREF Analog reference voltage VAREF (floating-point value)

XTAL Oscillator frequency

116 Chapter 5. Testing Programs

5

The following examples show how VTREGs may be used to aid in simulating
your target program. In most cases, you use VTREGs in signal functions to
simulate some part of your target hardware.

I/O Ports

µVision2 defines a VTREG for each I/O port: i.e. PORT2. Do not confuse
these VTREGs with the SFRs for each port (i.e. P2). The SFRs can be accessed
inside the CPU memory space. The VTREGs are the signals present on the pins.

With µVision2, it is easy to simulate input from external hardware. If you have
a pulse train coming into a port pin, you can use a signal function to simulate the
signal. For example, the following signal function inputs a square wave on P2.1
with a frequency of 1000Hz.

signal void one_thou_hz (void) {
while (1) { /* repeat forever */
PORT2 |= 1; /* set P1.2 */
twatch ((CLOCK / 2) / 2000); /* delay for .0005 secs */
PORT2 &= ~1; /* clear P1.2 */
twatch ((CLOCK / 2) / 2000); /* delay for .0005 secs */

} /* repeat */
}

The following command starts this signal function:

one_thou_hz ()

Refer to “Chapter 6. µVision2 Debug Functions” on page 131 for more
information about user and signal functions.

Simulating external hardware that responds to output from a port pin is only
slightly more difficult. Two steps are required. First, write a µVision2 user or
signal function to perform the desired operations. Second, create a breakpoint
that invokes the user function.

Suppose you use an output pin (P2.0) to enable or disable an LED. The
following signal function uses the PORT2 VTREG to check the output from the
CPU and display a message in the Command window.

signal void check_p20 (void) {
if (PORT2 & 1)) { /* Test P2.0 */
printf ("LED is ON\n"); } /* 1? LED is ON */

else { /* 0? LED is OFF */
printf ("LED is OFF\n"): }

}

Now, you must add a breakpoint for writes to port 1. The following command
line adds a breakpoint for all writes to PORT2.

Getting Started and Creating Applications 117

 5

BS WRITE PORT2, 1, "check_p20 ()"

Now, whenever your target program writes to PORT2, the check_P20 function
prints the current status of the LED. Refer to page 96 for more information
about setting breakpoints.

Serial Ports

The on-chip serial port is controlled with: S0TIME, S0IN, and S0OUT. S0IN
and S0OUT represent the serial input and output streams on the CPU. S0TIME
lets you specify whether the serial port timing instantaneous (STIME = 0) or the
serial port timing is relative to the specified baudrate (SxTIME = 1). When
S0TIME is 1, serial data displayed in the Serial window is output at the
specified baudrate. When S0TIME is 0, serial data is displayed in the Serial
window much more quickly.

Simulating serial input is just as easy as simulating digital input. Suppose you
have an external serial device that inputs specific data periodically (every
second). You can create a signal function that feeds the data into the CPU’s
serial port.

signal void serial_input (void) {
while (1) { /* repeat forever */
twatch (CLOCK); /* Delay for 1 second */

S0IN = 'A'; /* Send first character */
twatch (CLOCK / 900); /* Delay for 1 character time */

/* 900 is good for 9600 baud */
S0IN = 'B'; /* Send next character */
twatch (CLOCK / 900);
S0IN = 'C'; /* Send final character */

} /* repeat */
}

When this signal function runs, it delays for 1 second, inputs ‘A’, ‘B’, and ‘C’
into the serial input line and repeats.

Serial output is simulated in a similar fashion using a user or signal function and
a write access breakpoint as described above.

118 Chapter 5. Testing Programs

5

Program Variables (Symbols)
µVision2 lets you access variables, or symbols, in your target program by simply
typing their name. Variable names, or symbol names, represent numeric values
and addresses. Symbols make the debugging process easier by allowing you to
use the same names in the debugger as you use in your program.

When you load a target program module and the symbol information is loaded
into the debugger. The symbols include local variables (declared within
functions), the function names, and the line number information. You must
enable Options for Target – Output – Debug Information. Without debug
information, µVision2 cannot perform source-level and symbolic debugging.

Module Names

A module name is the name of an object module that makes up all or part of a
target program. Source-level debugging information as well as symbolic
information is stored in each module.

The module name is derived from the name of the source file. If the target
program consists of a source file named MCOMMAND.C and the C compiler
generates an object file called MCOMMAND.OBJ, the module name is
MCOMMAND.

Symbol Naming Conventions

The following conventions apply to symbols.

� The case of symbols is ignored: SYMBOL is equivalent to Symbol.
� The first character of a symbol name must be: ‘A’-’Z’, ‘a’-’z’, ‘_’, or ‘?’.
� Subsequent characters may be: ‘A’-’Z’, ‘a’-’z’, ‘0’-’9’, ‘_’, or ‘?’.

NOTE
When using the ternary operator (“?:”) in µVision2 with a symbol that begins
with a question mark (“?”), you must insert a space between the ternary
operator and the symbol name. For example, R5 = R6 ? ?symbol : R7.

Getting Started and Creating Applications 119

 5

Fully Qualified Symbols

Symbols may be entered using a fully qualified name that includes the name of
the module and name of the function in which the symbol is defined. A fully
qualified symbol name is composed of the following components:

� Module Name identifies the module where a symbol is defined.
� Line Number identifies the address of the code generated for a particular

line in the module.
� Function Name identifies the function in a module where a local symbol is

defined.
� Symbol Name identifies the name of the symbol.

This components may combined as shown in the following table:

Symbol Components Full Qualified Symbol Name addresses …

\ModuleName\LineNumber … line number LineNumber in ModuleName.

\ModuleName\FunctionName … FunctionName function in ModuleName.

\ModuleName\SymbolName … global symbol SymbolName in ModuleName.

\ModuleName\FunctionName\SymbolName … local symbol SymbolName in the
FunctionName function in ModuleName.

Examples of fully qualified symbol names:

Full Qualified Symbol Name Identifies …

\MEASURE\clear_records\idx … local symbol idx in the clear_records function in the
MEASURE module.

\MEASURE\MAIN\cmdbuf … cmdbuf local symbol in the MAIN function in the
MEASURE module.

\MEASURE\sindx … sindex symbol in the MEASURE module.
\MEASURE\225 … line number 225 in the MEASURE module.
\MCOMMAND\82 … line number 82 in the MCOMMAND module.
\MEASURE\TIMER0 … the TIMER0 symbol in the MEASURE module. This

symbol may be a function or a global variable.

120 Chapter 5. Testing Programs

5

Non-Qualified Symbols

Symbols may be entered using the only name of the variable or function they
reference. These symbols are not fully qualified and searched in a number of
tables until a matching symbol name is found. This search works as follows:

1. Register Symbols of the CPU: R0 – R15, RL0 – RH7, DPP0 – DPP3.

2. Local Variables in the Current Function in the target program. The
current function is determined by the value of the program counter.

3. Static Variables in the Current Module. As with the current function, the
current module is determined by the value of the program counter. Symbols
in the current module represent variables that were declared in the module but
outside a function.

4. Global or Public Symbols of your target program. SFR symbols defined by
µVision2 are considered to be public symbols and are also searched.

5. Symbols Created with the µVision2 DEFINE Command. These symbols
are used for debugging and are not a part of the target program.

6. System Variables that monitor and change debugger characteristics. They
are not a part of the target program. Refer to “System Variables” on page 113
for more information.

7. CPU Driver Symbole (VTREGs) defined by the CPU driver. Refer to
“CPU Pin Registers (VTREGs)” on page 114 for a description of VTREG
symbols.

NOTES
The search order for symbols changes when creating user or signal functions.
µVision2 first searches the table of symbols defined in the user or signal
function. Then, the above list is searched. Refer to “Chapter 6. µVision2
Debug Functions” on page 131 for more information about user and signal
functions.

A literal symbol that is preceded with a back quote character (`) modifies the
search order: CPU driver symbols (VTREGs) are searched instead of CPU
register symbols.

Getting Started and Creating Applications 121

 5

Literal Symbols

With the back quote character (`) you get a literal symbol name. Literal symbols
must be used to access:
� A program variable or symbol which is identical with a predefined Reserved

Word. Reserved Words are µVision2 debug commands & options, data
type names, CPU register names and assembler mnemonics.

� A CPU driver symbol (VTREG) that is identical to program variable name.

If a literal symbol name is given, µVision2 changes the search order for non-
qualified symbols that is described above. For a literal symbol CPU Driver
Symbols (VTREGs) are searched instead of CPU Register Symbols.

Examples for using Literal Symbols

If you define a variable named R5 in your program and you attempt to access it,
you will actually access the R5 CPU register. To access the R5 variable, you
must prefix the variable name with the back quote character.

Accessing the R5 Register Accessing the R5 Variable
>R5 = 121 >`R5 = 212

If your program contains a function named clock and you attempt to clock
VTREG, you will get the address of the clock function. To access the clock
VTREG, you must prefix the variable name with the back quote character.

Accessing the clock function Accessing the clock VTREG
>clock >`clock
0x00000DB2 20000000

122 Chapter 5. Testing Programs

5

Line Numbers
Line numbers enable source-level debugging and are produced by the compiler
or assembler. The line number specifies the physical address in the source
module of the associated program code. Since a line number represents a code
address, µVision2 lets you use in an expression. The syntax for a line number is
shown in the following table.

Line Number Symbol Code Address …

\LineNumber … for line number LineNumber in the current module.

\ModuleName\LineNumber … for line number LineNumber in ModuleName.

Example
\measure\108 /* Line 108 in module "MEASURE" */
\143 /* Line 143 in the current module */

Bit Addresses
Bit addresses represent bits in the memory. This includes bits in special function
registers. The syntax for a bit address is expression . bit_position

Examples
ACC.2 /* Bit 2 of register A */
0x20.5 /* Value of the 8051 bit space */

Getting Started and Creating Applications 123

 5

Memory Spaces
The 8051 microcontrollers provide different memory areas for variables and
program code. These memory areas are reflected in the prefixes that might be
used with expressions. The prefixes available are listed in the following table.

Prefix Memory Space Description

B: BIT Bit-addressable RAM.

C: CODE Code Memory.

Bx: CODE BANK Code Memory Bank; x specifies a bank number, example B1:
D: DATA Internal, directly-addressable RAM.

I: IDATA Internal, indirectly-addressable RAM.

X: XDATA Xdata RAM.

NOTE
Prefixes are not necessary with symbols since symbolic names typically have an
associated memory space.

Examples
C:0x100 /* Address 0x100 in code memory */
I:100 /* Address 0x64 in internal RAM of the 8051 */
X:0FFFFH /* Address 0xFFFF in the external data memory */
B:0x7F /* Bit address 127 or 2FH.7 */
B2:0x9000 /* Address 0x9000 in code bank 2 */

Type Specifications
µVision2 automatically performs implicit type casting in an expression. You
may explicitly cast expressions to specific data types. Type casting follows the
conventions used in the C programming language. Example:

(unsigned int) 31.2 /* gives unsigned int 31 from the float value */

Operators
µVision2 supports all operators of the C programming language. The operators
have the same meaning as their C equivalents.

124 Chapter 5. Testing Programs

5

Differences Between µVision2 and C
There are a number of differences between expressions in µVision2 and
expressions in the C programming language:

� µVision2 does not differentiate between uppercase and lowercase characters
for symbolic names and command names.

� µVision2 does not support converting an expression to a typed pointer like
char * or int *. Pointer types are obtained from the symbol information in
the target program. They cannot be created.

� Function calls entered in the µVision2 Output Window – Command page
refer to debug functions. You cannot invoke functions in your target from the
command line. Refer to “Chapter 6. µVision2 Debug Functions” on page
131 for more information.

� µVision2 does not support structure assignments.

Expression Examples
The following expressions were entered in the Command page of the Output
Window. All applicable output is included with each example. The MEASURE
example program was used for all examples.

Constant
>0x1234 /* Simple constant */
0x1234 /* Output */
>EVAL 0x1234
4660T 11064Q 1234H '...4' /* Output in several number bases */

Register
>R1 /* Interrogate value of register R1 */
0x000A /* Address from ACC = 0xE0, mem type = D: */
>R1 = --R7 /* Set R1 and R7 equal to value R7-1 */

Function Symbol
>main /* Get address of main() from MEASURE.C */
0x00233DA /* Reply, main starts at 0x233DA */

>&main /* Same as before */
0x00233DA

>d main /* Display: address = main */
0x0233DA: 76 E2 00 04 76 E3 00 04 - 66 E3 FF F7 E6 B6 80 00 v...v...f......
0x0233EA: E6 B7 00 00 E6 5A 40 00 - E6 D8 11 80 E6 2A 3C F6Z@......*<

Getting Started and Creating Applications 125

 5

0x0233FA: E6 28 3C F6 E6 CE 44 00 - BF 88 E6 A8 40 00 BB D8 .(<...D.....@..
0x02340A: E6 F8 7A 40 CA 00 CE 39 - E6 F8 18 44 CA 00 CE 39 ..z@...9...D...

Address Utilization Examples
>&\measure\main\cmdbuf[0] + 10 /* Address calculation */
0x23026

>_RBYTE (0x233DA) /* Read byte from code address 0x233DA */
0x76 /* Reply */

Symbol Output Examples
>dir \measure\main /* Output symbols from main() in module MEASURE */

R14 idx . . . uint /* Output */
R13 i . . . uint
0x0002301C cmdbuf . . . array[15] of char

Program Counter Examples
>$ = main /* Set program counter to main() */
>dir /* points to local mem sym. from main() */
R14 idx . . . uint /* Output */

R13 i . . . uint
0x0002301C cmdbuf . . . array[15] of char

Program Variable Examples
>cmdbuf /* Interrogate address from cmdbuf */
0x0002301C /* Output of address due to aggregate type (Array)*/
>cmdbuf[0] /* Output contents of first array element */
0x00
>I /* Output contents from i */
0x00
>idx /* Output contents from idx */
0x0000
>idx = DPP2 /* Set contents from index equal to register DPP2 */
>idx /* Output contents from idx */
0x0008

Line Number Examples
>\163 /* Address of the line number #104 */
0x000230DA /* Reply */
>\MCOMMAND\91 /* A line number of module "MCOMMAND" */
0x000231F6

Operator Examples
>--R5 /* Auto-decrement also for CPU registers */
0xFE
>mdisplay /* Output a PUBLIC bit variable */
0
>mdisplay = 1 /* Change */
>mdisplay /* Check result */
1

126 Chapter 5. Testing Programs

5

Structure Examples
>save_record[0] /* Address of a record */
0x002100A
>save_record[0].time.hour = DPP3 /* Change struct element of records */

>save_record[0].time.hour /* Interrogation */
0x03

µVision2 Debug Function Invocation Examples
>printf ("uVision2 is coming!\n") /* String constant within printf() */
uVision2 is coming! /* Output */
>_WBYTE(0x20000, _RBYTE(0x20001)) /* Read & Write Memory Byte */
> /* example useful in debug functions */
>interval.min = getint ("enter integer: ");

Fully Qualified Symbol Examples
>--\measure\main\idx /* Auto INC/DEC valid for qualified symbol */
0xFFFF

Tips and Tricks
The following section discusses advanced techniques that you may use with the
µVision2 debugger. You will not need the following features very often, but
readers of this section get a better feeling for the µVision2 debugger capabilities.

Simulating I/O Ports
µVision2 provides dialogs that show the
status of all I/O ports. The I/O Pins are
represented with VTREGs. You may use this
VTREGs also together with signal functions
or breakpoints as shown in the following
example program.

// in your C user program
p1value = P1; // read Port 1 input
P3 = p1value; // write to Port 3

Breakpoints that you define in the µVision2 simulator:
bs write PORT3, 1, "printf (\"Port3 value=%X\\n\", PORT3)"
bs read PORT1, 1, "PORT1 = getint (\"Input Port1 value\")"

When you execute your C program, µVision2
asks you for a Port1 input value. If a new

Getting Started and Creating Applications 127

 5

output value is written to Port3, a message is printed in the Output Window -
Command page. Refer also to “CPU Pin Registers (VTREGs)” on page 114.

Simulating Interrupts and Clock Inputs
µVision2 simulates the behavior of the I/O inputs.
If an I/O pin is configured as counter input the
count value increments when the pin toggles. The
following example shows how to simulate input
for Counter 3:
// in your C user program
T3CON = 0x004B; // set T3 Counter Mode

You may toggle the counter input P3.6 with the
VTREG PORT3, i.e. with a signal function:
signal void ToggleT3Input (void) {
while (1) {
PORT3 = PORT3 ^ 0x40; // toggle P3.6
twatch (CLOCK / 100000); // with 100kHz

}
}

View the Counter 3 status
with the Peripheral dialog.

Also interrupt inputs are simulated: if a port pin is used as interrupt input, the
interrupt request will be set if you toggle the associated I/O pin.

Simulating External I/O Devices
External I/O devices are typical memory mapped. You may simulate such I/O
devices with the Memory Window provided in the µVision2 debugger. Since
the C user program does not contain any variable declarations for such memory
regions it is required that you map this memory with the MAP command:
MAP X:0x1000, X:0x1FFF READ WRITE /* MAP memory for I/O area */

You may use breakpoints in combination with debug functions to simulate the
logic behind the I/O device. Refer to “User Functions” on page 141 for more
information. Example for a breakpoint definition:
BS WRITE 0x100000, 1, "IO_access ()"

128 Chapter 5. Testing Programs

5

Assigning Serial I/O to a PC COM Port
The ASSIGN command allows you to use a PC COM Port as input for an UART
in the µVision2 simulator. If you enter the following commands, serial I/O is
performed via the COM2: interface of your PC. The STIME variable allows you
to ignore the timing of the simulated serial interface.

>MODE COM2 9600, 0, 8, 1 /*9600 bps, no parity, 8 data & 1 stop bit*/
>ASSIGN COM2 <S0IN >S0OUT /*ASC0 output & input is done with COM2:*/
>S0TIME = 0 /*ignore timing of simulated ASC0 interface*/

Checking Illegal Memory Accesses
Sometimes it is required to trap illegal memory accesses. The µVision2 access
breakpoints might be used together with the system variable _break_. In the
following example the program execution stops when the array save_record is
accessed outside of the function clear_records.

Command Input from File
Commands for the µVision2 debugger might be read from file with the
INCLUDE command. Under Options for Target - Debug you may also specify
an Initialization File with debug commands. Refer to page 102 for more
information.

Getting Started and Creating Applications 129

 5

Presetting I/O Ports or Memory Contents
Some applications require that I/O port values or memory contents are set to
specific values before program simulation. In the debug Initialization File you
may include the commands that are required to preset the simulator. Example:
PORT3 = 0 /* set Port3 to zero */
LOAD MEMORY.HEX /* load hex file contents to memory */

/* use the SAVE command to save memory contents */

Writing Debug Output to a File
The commands LOG and SLOG can be used to write debug output files. You
may run the µVision2 debugger in batch files and use a debug Initialization File
that contains these commands to automate program test. Refer to “µVision 2
Command Line Invocation” on page 211 for additional information.
>LOG >>C:\TMP\DEBUGOUT.TXT /* protocol Output Window - Command page*/
>SLOG >>C:\TMP\DEBUGOUT.TXT /* protocol Serial Window output */
>/* Output of the Command page and the Serial Window written to file */
>LOG OFF /* stop Output Window protocol */
>SLOG OFF /* stop Serial Window protocol */

Using Keyboard Shortcuts
View – Options allows you
to configure shortcut keys
for all menu items. With
this dialog you may
personalize µVision2 to your
needs. For example, you
may add a shortcut key to
insert/remove breakpoints in
an editor window.

NOTE
The assignment of shortcut
keys is saved in the file
C:\KEIL\UV2\UV2.MAC.

130 Chapter 5. Testing Programs

5

Kernel Aware Debugging
µVision2 supports Kernel Awareness for operating systems with debug DLLs.
Refer to “RTX Kernel Aware Debugging” on page 180 for details on testing
programs that use the RTX-51 Tiny real-time operating system. RTX-51 Full
applications are tested with similar features. µVision2 allows you to add own
debug DLLs that display the status information for operating systems or other
applications. We will provide an Application Note on www.keil.com that
explains how to write user-specific debug DLLs for the µVision2 debugger.

Getting Started and Creating Applications 131

 6

Chapter 6. µVision2 Debug Functions
This chapter discusses a powerful aspect of the µVision2: debug functions. You
may use functions to extend the capabilities of the µVision2 debugger. You may
create functions that generate external interrupts, log memory contents to a file,
update analog input values periodically, and input serial data to the on-chip serial
port.

NOTE
Do note confuse µVision2 debug functions with functions of your target
program. µVision2 debug functions aids you in debugging of your application
and are entered or with the Function Editor or on µVision2 command level.

µVision2 debug functions utilize a subset of the C programming language. The
basic capabilities and restrictions are as follows:

� Flow control statements if, else, while, do, switch, case, break, continue,
and goto may be used in debug functions. All of these statements operate in
µVision2 debug functions as they do in ANSI C.

� Local scalar variables are declared in debug functions in the same way they
are declared in ANSI C. Arrays are not allowed in debug functions.

For a complete description of the “Differences Between Debug Functions and C”
refer to page 147.

Creating Functions
µVision2 has a built-in debug function editor which opens with Debug –
Function Editor. When you start the function editor, the editor asks for a file
name or opens the file specified under Options for Target – Debug –
Initialization File. The debug function editor works in the same way as the
build-in µVision2 editor and allows you to enter and compile debug functions.

132 Chapter 6. µVision2 Debug Functions

6

Options Description

Open open an existing file with µVision2 debug functions or commands.
New create a new file
Save save the editor content to file.
Save As specify a file for saving the debug functions.
Compile send current editor content to the µVision2 command interpreter. This

compiles all debug functions.
Compile Errors shows a list of all errors. Choose an error, this locates the cursor to the

erroneous line in the editor window.

Once you have created a file with µVision2 debug functions, you may use the
INCLUDE command to read and process the contents of the text file. For
example, if you type the following command in the command window, µVision2
reads and interprets the contents of MYFUNCS.INI.

>INCLUDE MYFUNCS.INI

MYFUNCS.INI may contain debug commands and function definitions. You
may enter this file also under Options for Target – Debug - Initialization File.
Every time you start the µVision2 debugger, the contents of MYFUNCS.INI
will be processed.

Functions that are no longer needed may be deleted using the KILL command.

Getting Started and Creating Applications 133

 6

Invoking Functions
To invoke or run a debug function you must type the name of the function and
any required parameters in the command window. For example, to run the
printf built-in function to print “Hello World,” enter the following text in the
command window:

>printf ("Hello World\n")

The µVision2 debugger responds by printing the text “Hello World” in the
Command page of the Output Window.

Function Classes
µVision2 supports the following three classes of functions: Predefined
Functions, User Functions, and Signal Functions.

� Predefined Functions perform useful tasks like waiting for a period of time
or printing a message. Predefined functions cannot be removed or redefined.

� User Functions extend the capabilities of µVision2 and can process the same
expressions allowed at the command level. You may use the predefined
function exec, to execute debug commands from user and signal functions.

� Signal Functions simulate the behavior of a complex signal generator and
lets you create various input signals to your target application. For example,
signals can be applied on the input lines of the CPU under simulation. Signal
functions run in the background during your target program’s execution.
Signal functions are coupled via a CPU states counter that has a resolution of
one instruction state. A maximum of 64 signal functions may be active
simultaneously.

As functions are defined, they are entered into the internal table of user or signal
functions. You may use the DIR command to list the predefined, user, and
signal functions available.

DIR BFUNC displays the names of all built-in functions. DIR UFUNC
displays the names of all user functions. DIR SIGNAL displays the names of all
signal functions. DIR FUNC displays the names of all user, signal, and built-in
functions.

134 Chapter 6. µVision2 Debug Functions

6

Predefined Functions
µVision2 includes a number of predefined debug functions that are always
available for use. They cannot be redefined or deleted. Predefined functions are
provided to assist the user and signal functions you create.

The following table lists all predefined µVision2 debug functions.

Retur
n

Name Parameter Description

void exec (“command_string”) Execute Debug Command

double getdbl (“prompt_string”) Ask the user for a double number

int getint (“prompt_string”) Ask the user for a int number

long getlong (“prompt_string”) Ask the user for a long number

void memset (start_addr, len, value) fill memory with constant value

void printf (“string”, ...) works like the ANSI C printf function

int rand (int seed) return a random number in the range -
32768 to +32767

void rwatch (address) Delay execution of signal function until the
specified memory address is read.

void wwatch (address) Delay execution of signal function until the
specified memory address is written.

void swatch (ulong states) Delay execution of signal function for the
specified number of seconds.

void twatch (float seconds) Delay execution of signal function for the
specified number of CPU states.

int _TaskRunning_ (ulong func_address) Checks if the specified task function is the
current running task. Only available if a
DLL for RTX Kernel Awareness is used.

uchar _RBYTE (address) Read char on specified memory address
uint _RWORD (address) Read int on specified memory address
ulong _RDWORD (address) Read long on specified memory address
float _RFLOAT (address) Read float on specified memory address
double _RDOUBLE (address) Read double on specified memory

address
void _WBYTE (address, uchar val) Write char on specified memory address
void _WWORD (address, uint val) Write int on specified memory address
void _WDWORD (address, ulong val) Write long on specified memory address
void _WFLOAT (address, float val) Write float on specified memory address
void _WDOUBLE (address, double val) Write double on specified memory

address

The predefined functions are described below.

Getting Started and Creating Applications 135

 6

void exec (“command_string”)

The exec function lets you invoke µVision2 debug commands from within your
user and signal functions. The command_string may contain several commands
separated by semicolons.

The command_string is passed to the command interpreter and must be a valid
debug command.

Example
>exec ("DIR PUBLIC; EVAL R7")
>exec ("BS timer0")
>exec ("BK *")

double getdbl (“prompt_string”),
int getint (“prompt_string”),
long getlong (“prompt_string”)

This functions prompts you to enter a number and, upon entry, returns the value
of the number entered. If no entry is made, the value 0 is returned.

Example
>age = getint ("Enter Your Age")

void memset (
 start address, ulong length, uchar value)

The memset function sets the memory specified with start address and length to
the specified value.

Example
>MEMSET (0x20000, 0x1000, 'a') /* Fill 0x20000 to 0x20FFF with "a" */

136 Chapter 6. µVision2 Debug Functions

6

void printf (“format_string”, ...)

The prinf function works like the ANSI C library function. The first argument
is a format string. Following arguments may be expressions or strings. The
conventional ANSI C formatting specifications apply to printf.

Example
>printf ("random number = %04XH\n", rand(0))
random number = 1014H

>printf ("random number = %04XH\n", rand(0))
random number = 64D6H

>printf ("%s for %d\n", "uVision2", 8051)
uVision2 for 8051

>printf ("%lu\n", (ulong) -1)
4294967295

int rand (int seed)

The rand function returns a random number in the range -32768 to +32767. The
random number generator is reinitialized each time a non-zero value is passed in
the seed argument. You may use the rand function to delay for a random
number of clock cycles or to generate random data to feed into a particular
algorithm or input routine.

Example
>rand (0x1234) /* Initialize random generator with 0x1234 */
0x3B98

>rand (0) /* No initialization */
0x64BD

Getting Started and Creating Applications 137

 6

void twatch (long states)

The twatch function may be used in a signal function to delay continued
execution for the specified number of CPU states. µVision2 updates the state
counter while executing your target program.

Example

The following signal function toggles the INT0 input (P3.2) every second.

signal void int0_signal (void) {
while (1) {
PORT3 |= 0x04; /* pull INT0(P3.2) high */
PORT3 &= ~0x04; /* pull INT0(P3.2) low and generate interrupt */
PORT3 |= 0x04; /* pull INT0(P3.2) high again */
twatch (CLOCK); /* wait for 1 second */
}

}

NOTE
The twatch function may be called only from within a signal function. Calls
outside a signal function are not allowed and result in an error message.

void swatch (float seconds)

The swatch function may be used in a signal function to delay continued
execution for the specified number of seconds.

Example

The following signal function toggles the INT0 input (P3.2) every half second.

signal void int0_signal (void) {
while (1) {
PORT3 |= 0x04; /* pull INT0(P3.2) high */
PORT3 &= ~0x04; /* pull INT0(P3.2) low and generate interrupt */
PORT3 |= 0x04; /* pull INT0(P3.2) high again */
swatch (0.5); /* wait for 1 second */
}

}

NOTE
The swatch function may be called only from within a signal function. Calls
outside a signal function are not allowed and result in an error message.

138 Chapter 6. µVision2 Debug Functions

6

void rwatch (address)

The rwatch function may be used in a signal function to delay continued
execution until the specified memory address is read from.

Example

The following signal function toggles Port 1.0 each time XDATA address
0x1234 is read.

signal void my_signal (void) {
while (1) {
PORT1 ^= 0x01; /* toggle P1.0 */
rwatch (X:0x1234); /* wait until X:0x1234 is read */
}

}

NOTE
The rwatch function may be called only from within a signal function. Calls
outside a signal function are not allowed and result in an error message.

void wwatch (address)

The wwatch function may be used in a signal function to delay continued
execution until the specified memory address is written to.

Example

The following signal function toggles Port 1.0 each time XDATA address
0x4000 is written.

signal void my_signal (void) {
while (1) {
PORT1 ^= 0x01; /* toggle P1.0 */
wwatch (X:0x4000); /* wait until X:0x4000 is written */
}

}

NOTE
The wwatch function may be called only from within a signal function. Calls
outside a signal function are not allowed and result in an error message.

Getting Started and Creating Applications 139

 6

int _TaskRunning_ (ulong func_address)

This function checks if the specified task function is the current running task.
TaskRunning is only available if you select an Operating System under
Options for Target – Target. µVision2 loads an additional DLL that kernel
awareness for operating systems. Refer to “RTX Kernel Aware Debugging” on
page 180 for more information.

The result of the debug function _TaskRunning_ may be assigned to the
break system variable to stop program execution when a specific task is
active. An example is shown on page 182.

Example
>_TaskRunning_ (command) /* check if task 'command' is running */
0001 /* returns 1 if task is running */
>_break_= _TaskRunning_ (init) /* stop program when 'init' is running */

uchar _RBYTE (address),
uint _RWORD (address),
ulong _RDWORD (address),
float _RFLOAT (address),
double _RDOUBLE (address)

These functions return the content of the specified memory address.

Example
>_RBYTE (0x20000) /* return the character at 0x20000 */
>_RFLOAT (0xE000) /* return the float value at 0xE000 */
>_RDWORD (0x1000) /* return the long value at 0x1000 */

140 Chapter 6. µVision2 Debug Functions

6

_WBYTE (address, uchar value),
_WWORD (address, uint value),
_WDWORD (address, ulong value),
_WFLOAT (address, float value,
_WDOUBLE (address, double value)

These functions write a value to the specified memory address.

Example
>_WBYTE (0x20000, 0x55) /* write the byte 0x33 at 0x20000 */
>_RFLOAT (0xE000, 1.5) /* write the float value 1.5 at 0xE000 */
>_RDWORD (0x1000, 12345678) /* write the long value 12345678 at 0x1000*/

Getting Started and Creating Applications 141

 6

User Functions
User functions are functions you create to use with the µVision2 debugger. You
may enter user functions directly in the function editor or you may use the
INCLUDE command to load a file that contains one or more user functions.

NOTE
µVision2 provides a number of system variables you may use in user functions.
Refer to “System Variables” on page 113 for more information.

User functions begin with FUNC keyword and are defined as follows:

FUNC return_type fname (parameter_list) {
statements

}

return_type is the type of the value returned by the function and may be: bit,
char, float, int, long, uchar, uint, ulong, void. You may use
void if the function does not return a value. If no return type is
specified the type int is assumed.

fname is the name of the function.

parameter_list is the list of arguments that are passed to the function. Each
argument must have a type and a name. If no arguments are
passed to the function, use void for the parameter_list. Multiple
arguments are separated by commas.

statements are instructions the function carries out.

{ is the open curly brace. The function definition is complete
when the number of open braces is balanced with the number of
the closing braces (}).

142 Chapter 6. µVision2 Debug Functions

6

Example

The following user function displays the contents of several CPU registers. For
more information about “Creating Functions” refer to page 131.

FUNC void MyRegs (void) {
printf ("---------- MyRegs() ----------\n");
printf (" R4 R8 R9 R10 R11 R12\n");
printf (" %04X %04X %04X %04X %04X %04X\n",

R4, R8, R9, R10, R11, R12);
printf ("------------------------------\n");

}

To invoke this function, type the following in the command window.

MyRegs()

When invoked, the MyRegs function displays the contents of the registers and
appears similar to the following:

---------- MyRegs() ----------
R4 R8 R9 R10 R11 R12
B02C 8000 0001 0000 0000 0000

You may define a toolbox button to invoke the user function with:

DEFINE BUTTON "My Registers", "MyRegs()"

Restrictions
� µVision2 checks that the return value of a user function corresponds to the

function return type. Functions with a void return type must not return a
value. Functions with a non-void return type must return a value. Note that
µVision2 does not check each return path for a valid return value.

� User functions may not invoke signal functions or the twatch function.
� The value of a local object is undefined until a value is assigned to it.
� Remove user functions using the KILL FUNC command.

Getting Started and Creating Applications 143

 6

Signal Functions
A Signal function let you repeat operations, like signal inputs and pulses, in the
background while µVision2 executes your target program. Signal functions help
you simulate and test serial I/O, analog I/O, port communications, and other
repetitive external events.

Signal functions execute in the background while µVision2 simulates your target
program. Therefore, a signal function must call the twatch function at some
point to delay and let µVision2 run your target program. µVision2 reports an
error for signal functions that never call twatch.

NOTE
µVision2 provides a number of system variables you may use in your signal
functions. Refer to “System Variables” on page 113 for more information.

Signal functions begin with the SIGNAL keyword and are defined as follows:

SIGNAL void fname (parameter_list) {
statements

}

fname is the name of the function.

parameter_list is the list of arguments that are passed to the function. Each
argument must have a type and a name. If no arguments are
passed to the function, use void for the parameter_list. Multiple
arguments are separated by commas.

statements are instructions the function carries out.

{ is the open curly brace. The function definition is complete
when the number of open braces is balanced with the number of
the closing braces (“}”).

144 Chapter 6. µVision2 Debug Functions

6

Example

The following example shows a signal function that puts the character ‘A’ into
the serial input buffer once every 1,000,000 CPU states. For more information
about “Creating Functions” refer to page 131.

SIGNAL void StuffS0in (void) {
while (1) {
S0IN = 'A';
twatch (1000000);

}
}

To invoke this function, type the following in the command window.

StuffS0in()

When invoked, the StuffS0in signal function puts and ASCII character ‘A’ in
the serial input buffer, delays for 1,000,000 CPU states, and repeats.

Restrictions

The following restrictions apply to signal functions:

� The return type of a signal function must be void.
� A signal function may have a maximum of eight function parameters.
� A signal function may invoke other predefined functions and user functions.
� A signal function may not invoke another signal function.
� A signal function may be invoked by a user function.
� A signal function must call the twatch function at least once. Signal

functions that never call twatch do not allow the target program time to
execute. Since you cannot use Ctrl+C to abort a signal function, µVision2
may enter an infinite loop.

Getting Started and Creating Applications 145

 6

Managing Signal Functions

µVision2 maintains a queue for active signal functions. A signal function may
either be either idle or running. A signal function that is idle is delayed while it
waits for the number of CPU states specified in a call to twatch to expire. A
signal function that is running is executing statements inside the function.

When you invoke a signal function, µVision2 adds that function to the queue and
marks it as running. Signal functions may only be activated once, if the function
is already in the queue, a warning is displayed. View the state of active signal
functions with the command SIGNAL STATE. Remove active signal functions
form the queue with the command SIGNAL KILL.

When a signal function invokes the twatch function, it goes in the idle state for
the number of CPU states passed to twatch. After the user program has
executed the specified number of CPU states, the signal function becomes
running. Execution continues at the statement after twatch.

If a signal function exits, because of a return statement, it is automatically
removed from the queue of active signal functions.

146 Chapter 6. µVision2 Debug Functions

6

Analog Example

The following example shows a signal function that varies the input to analog
input 0 on a 8051 device with A/D converter. The function increases and
decreases the input voltage by 0.5 volts from 0V and an upper limit that is
specified as the signal function’s only argument. This signal function repeats
indefinitely, delaying 200,000 states for each voltage step.

signal void analog0 (float limit) {
float volts;

printf ("Analog0 (%f) entered.\n", limit);
while (1) { /* forever */
volts = 0;
while (volts <= limit) {
ain0 = volts; /* analog input-0 */
twatch (200000); /* 200000 states Time-Break */
volts += 0.1; /* increase voltage */

}
volts = limit;
while (volts >= 0.0) {
ain0 = volts;
twatch (200000); /* 200000 states Time-Break */
volts -= 0.1; /* decrease voltage */

}
}

}

The signal function analog0 can then be invoked as follows:

>ANALOG0 (5.0) /* Start of 'ANALOG()' */
ANALOG0 (5.000000) ENTERED

The SIGNAL STATE command to displays the current state of the analog0:

>SIGNAL STATE
1 idle Signal = ANALOG0 (line 8)

µVision2 lists the internal function number, the status of the signal function: idle
or running, the function name and the line number that is executing.

Since the status of the signal function is idle, you can infer that analog0
executed the twatch function (on line 8 of analog0) and is waiting for the
specified number of CPU states to elapse. When 200,000 states pass, analog0
continues execution until the next call to twatch in line 8 or line 14.

The following command removes the analog0 signal function from the queue of
active signal functions.

>SIGNAL KILL ANALOG0

Getting Started and Creating Applications 147

 6

Differences Between Debug Functions
and C
There are a number of differences between ANSI C and the subset of features
support in µVision2 debug user and signal functions.

� µVision2 does not differentiate between uppercase and lowercase. The
names of objects and control statements may be written in either uppercase or
lowercase.

� µVision2 has no preprocessor. Preprocessor directives like #define,
#include, and #ifdef are not supported.

� µVision2 does not support global declarations. Scalar variables must be
declared within a function definition. You may define symbols with the
DEFINE command and use them like you would use a global variable.

� In µVision2, variables may not be initialized when they are declared.
Explicit assignment statements must be used to initialize variables.

� µVision2 functions only support scalar variable types. Structures, arrays, and
pointers are not allowed. This applies to the function return type as well as
the function parameters.

� µVision2 functions may only return scalar variable types. Pointers and
structures may not be returned.

� µVision2 functions cannot be called recursively. During function execution,
µVision2 recognizes recursive calls and aborts function execution if one is
detected.

� µVision2 functions may only be invoked directly using the function name.
Indirect function calls via pointers are not supported.

� µVision2 supports only the ANSI style for function declarations with a
parameter list. The old K&R format is not supported. For example, the
following ANSI style function is acceptable.
func test (int pa1, int pa2) { /* ANSI type, correct */
/* ... */

}

The following K&R style function is not acceptable.
func test (pa1, pa2) /* Old K&R style is */
int pa1, pa2; /* not supported */
{
/* ... */

}

148 Chapter 6. µVision2 Debug Functions

6

Differences Between dScope and the
µVision2 Debugger
The µVision2 debugger replaces the Keil dScope for Windows. dScope debug
functions require the following modifications for correct execution in the
µVision2 debugger.

� In dScope the memset debug function parameters are different. The
µVision2 memset debug function parameters are now identical with the
ANSI C memset function.

� The dScope debug function bit is no longer available and needs to be
replaced with _RBYTE and _WBYTE function calls. With dScope debug
functions char, uchar, int, uint, long, ulong, float, and double it is possible
to read and write memory. Replace these debug functions in µVision2
according the following list.

dScope Memory
Access Function

µVision2 Debugger Replacement
Memory Read Memory Write

bit _RBYTE combine _RBYTE and _WBYTE
char, uchar _RBYTE _WBYTE

int, uint _RWORD _WWORD
long, ulong _RDWORD _WDWORD

float _RFLOAT _WFLOAT
double _RDOUBLE _WDOUBLE

Getting Started and Creating Applications 149

 7

Chapter 7. Sample Programs
This section describes the sample programs that are included in our tool kits.
The sample programs are ready for you to run. You can use the sample
programs to learn how to use our tools. Additionally, you can copy the code
from our samples for your own use.

The sample programs are found in the C:\KEIL\C51\EXAMPLES\ folder. Each
sample program is stored in a separate folder along with project files that help
you quickly build and evaluate each sample program.

The following table lists the sample programs and their folder names.

Example Description

BADCODE Program with syntax errors and warnings. You may use the µVision2 editor to
correct these.

BANK_EX1 A simple code banking application.

CSAMPLE Simple addition and subtraction calculator that shows how to build a multi- module
project with µVision2.

DHRY Dhrystone benchmark. Calculates the dhrystones factor for the target CPU.

HELLO Hello World program. Try this first when you begin using µVision2. It prints Hello
World on the serial interface and helps you confirm that the development tools
work correctly. Refer to “HELLO: Your First 8051 C Program” on page 150 for
more information about this sample program.

MEASURE Data acquisition system that collects analog and digital signals. Refer to
“MEASURE: A Remote Measurement System” on page 155 for more information
about this sample program.

RTX_EX1 Demonstrates round-robin multitasking using RTX-51 Tiny.

RTX_EX2 Demonstrates an RTX-51 Tiny application that uses signals.

SIEVE Benchmark that calculates prime numbers.

TRAFFIC Shows how to control a traffic light using the RTX-51 Tiny real-time executive.

WHETS Benchmark program that calculates the whetstones factor for the target CPU.

To begin using one of the sample projects, use the µVision2 menu Project –
Open Project and load the project file.

The following sections in this chapter describe how to use the tools to build the
following sample programs:

� HELLO: Your First 8051 C Program
� MEASURE: A Remote Measurement System

150 Chapter 7. Sample Programs

7

HELLO: Your First 8051 C Program
The HELLO sample program is located in C:\KEIL\C51\EXAMPLES\HELLO\ .
HELLO does nothing more than print the text “Hello World” to the serial port.
The entire program is contained in a single source file HELLO.C.

This small application helps you confirm that you can compile, link, and debug
an application. You can perform these operations from the DOS command line,
using batch files, or from µVision2 for Windows using the provided project file.

The hardware for HELLO is based on the standard 8051 CPU. The only on-chip
peripheral used is the serial port. You do not actually need a target CPU because
µVision2 lets you simulate the hardware required for this program.

HELLO Project File
In µVision, applications are
maintained in a project file.
A project file has been
created for HELLO. To
load this project, select
Open Project from the
Project menu and open
HELLO.UV2 from the folder
…\C51\EXAMPLES\HELLO.

Editing HELLO.C
You can now edit HELLO.C. Double click on HELLO.C in the Files page of the
Project Window. µVision2 loads and displays the contents of HELLO.C in an
editor window.

Getting Started and Creating Applications 151

 7

 Compiling and Linking HELLO
When you are ready to compile and link your project, use the Build Target
command from the Project menu or the Build toolbar. µVision2 begins to
translate and link the source files and creates an absolute object module that you
can load into the µVision2 debugger for testing. The status of the build process
is listed in the Build page of the Output Window.

NOTE
You should encounter no errors when you use µVision2 with the provided
sample projects.

152 Chapter 7. Sample Programs

7

 Testing HELLO
Once the HELLO program is compiled and linked, you can test it with the
µVision2 debugger. In µVision2, use the Start/Stop Debug Session command
from the Debug menu or toolbar. µVision2 initializes the debugger and starts
program execution till the main function. The following screen displays.

 Open Serial Window #1 that displays the serial output of the application
with the Serial Window #1 command from the View menu or the Debug
toolbar.

 Run HELLO with the Go command from the Debug menu or toolbar. The
HELLO program executes and displays the text “Hello World” in the
serial window. After HELLO outputs “Hello World,” it begins executing
an endless loop.

 Stop Running HELLO with the Halt command from the Debug menu or
the toolbar. You may also type ESC in the Command page of the Output
window.

Getting Started and Creating Applications 153

 7

During debugging µVision2 will show the following output:

Single-Stepping and Breakpoints

 Use the Insert/Remove Breakpoints command from the toolbar or the
local editor menu that opens with a right mouse click and set a breakpoint
at the beginning of the main function.

 Use the Reset CPU command from the Debug menu or toolbar. If you
have halted HELLO start program execution with Run. µVision2 will
stop the program at the breakpoint.

 You can single-step through the HELLO program using the Step buttons
in the debug toolbar. The current instruction is marked with a yellow
arrow. The arrow moves each time you step

 Place the mouse cursor over a variable to view their value.

 You may stop debugging at any time with Start/Stop Debug Session
command.

154 Chapter 7. Sample Programs

7

command.

Getting Started and Creating Applications 155

 7

MEASURE: A Remote Measurement
System
The MEASURE sample program is located in the \C51\EXAMPLES\MEASURE\
folder. MEASURE runs a remote measurement system that collects analog and
digital data like a data acquisition systems found in a weather stations and
process control applications. MEASURE is composed of three source files:
GETLINE.C, MCOMMAND.C, and MEASURE.C.

This implementation records data from two digital ports and four A/D inputs. A
timer controls the sample rate. The sample interval can be configured from
1 millisecond to 60 minutes. Each measurement saves the current time and all of
the input channels to a RAM buffer.

Hardware Requirements
The hardware for MEASURE is based on the C515 CPU. This microcontroller
provides analog and digital input capability. Port 4 and port 5 is used for the
digital inputs and AN0 through AN3 are used for the analog inputs. You do not
actually need a target CPU because µVision2 lets you simulate all the hardware
required for this program.

MEASURE Project File

The project file for the MEASURE sample
program is called MEASURE.UV2. To load this
project file, use Open Project from the Project
menu and select MEASURE.UV2 in the folder
C:\KEIL\C51\EXAMPLES\MEASURE.

The Files page in the Project Window shows the
source files that compose the MEASURE project.
The three application related source files that are
located in the Main Files group. The function of
the source files is described below. To open a
source file, double-click on the filename.

156 Chapter 7. Sample Programs

7

The project contains several targets for different
test environments. For debugging with the
simulator select the target Small Model in the
Build toolbar.

MEASURE.C contains the main C function for the measurement system and the
interrupt routine for timer 0. The main function initializes all
peripherals of the C515 and performs command processing for
the system. The timer interrupt routine, timer0, manages the real-
time clock and the measurement sampling of the system.

MCOMMAND.C processes the display, time, and interval commands. These
functions are called from main. The display command lists the
analog values in floating-point format to give a voltage between
0.00V and 5.00V.

GETLINE.C contains the command-line editor for characters received from the
serial port.

 Compiling and Linking MEASURE
When you are ready to compile and link MEASURE, use the Build Target
command from the Project menu or the toolbar. µVision2 begins to compile and
link the source files in MEASURE and displays a message when the build is
finished.

Once the project is build, you are ready to browse the symbol information or
begin testing the MEASURE program.

Getting Started and Creating Applications 157

 7

 Browse Symbols
The MEASURE project is configured to generate full browse and debug
information. To view the information, use the Source Browse command from
the View menu or the toolbar. For more information refer to “Source Browser”
on page 69.

 Testing MEASURE
The MEASURE sample program is designed to accept commands from the on-
chip serial port. If you have actual target hardware, you can use a terminal
simulation to communicate with the C515 CPU. If you do not have target
hardware, you can use µVision2 to simulate the hardware. You can also use the
serial window in µVision2 to provide serial input.

Once the MEASURE program is build, you can test it. Use the Start/Stop
Debug Session command from the Debug menu to start the µVision2 debugger.

Remote Measurement System Commands

The serial commands that MEASURE supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must
be terminated with a carriage return. You can enter these commands in the
Serial Window #1 during debugging.

Command Serial Text Description

Clear C Clears the measurement record buffer.

Display D Displays the current time and input values.

Time T hh:mm:ss Sets the current time in 24-hour format.

Interval I mm:ss.ttt Sets the interval time for the measurement samples. The
interval time must be between 0:00.001 (for 1ms) and
60:00.000 (for 60 minutes).

Start S Starts the measurement recording. After receiving the start
command, MEASURE samples all data inputs at the specified
interval.

Read R [count] Displays the recorded measurements. You may specify the
number of most recent samples to display with the read
command. If no count is specified, the read command
transmits all recorded measurements. You can read
measurements on the fly if the interval time is more than 1
second. Otherwise, the recording must be stopped.

Quit Q Quits the measurement recording.

158 Chapter 7. Sample Programs

7

 View Program Code

µVision2 lets you view
the program code in the
Disassembly Window
that opens with the View
menu or the toolbar
button. The Disassembly
Window shows
intermixed source and
assembly lines. You
may change the view
mode or use other
commands from the
local menu that opens
with the right mouse
button.

 View Memory Contents

µVision2 displays
memory in various
formats. The Memory
Window opens via the
View menu or the
toolbar button. You can
enter the address of four
different memory areas
in the pages. The local
menu allows you to
modify the memory
contents or select
different output formats.

Program Execution

 Before you begin simulating MEASURE, open the Serial Window #1 that
displays the serial output with the View menu or the Debug toolbar. You

Getting Started and Creating Applications 159

 7

may disable other windows if your screen is not large enough.

You can use the Step toolbar buttons on assembler instructions or source code
lines. If the Disassembly Window is active, you single step at assembly
instruction basis. If an editor window with source code is active, you single step
at source code level.

 The StepInto toolbar button lets you single-step through your application
and into function calls.

 StepOver executes a function call as single entity and is not interrupt
unless a breakpoint occurs.

 On occasion, you may accidentally step into a function unnecessarily.
You can use StepOut to complete execution of that function and return to
the statement immediately following the function call.

 A yellow arrow marks the current assembly or high-level statement. You
may use the you may accidentally step into a function unnecessarily. You
can use StepOut to complete execution of that function and return to the
statement immediately following the function call.

 The toolbar or local menu command Run till Cursor Line lets you use the
current cursor line as temporary breakpoint.

 With Insert/Remove Breakpoints command you can set or remove
breakpoints on high-level source lines or assembler statements.

 Call Stack

µVision2 internally tracks
function nesting as the
program executes. The Call
Stack page of the Watch
Window shows the current
function nesting. A double
click on a line displays the
source code that called the
selected function.

160 Chapter 7. Sample Programs

7

 Trace Recording

It is common during debugging
to reach a breakpoint where
you require information like
register values and other
circumstances that led to the
breakpoint. If Enable/Disable
Trace Recording is set you
can view the CPU instructions
that were executed be reaching
the breakpoint. The Regs page
of the Project Window shows
the CPU register contents for
the selected instruction.

Getting Started and Creating Applications 161

 7

Breakpoints Dialog
µVision2 also supports complex breakpoints as discussed on page 96. You may
want to halt program execution when a variable contains a certain value. The
example shows how to stop when the value 3 is written to current.time.sec.

Open the Breakpoints dialog from the Debug menu. Enter as expression
current.time.sec==3. Select the Write check box (this option specifies that
the break condition is tested only when the expression is written to). Click on
the Define button to set the breakpoint.

To test the breakpoint condition perform the following steps:

 Reset CPU.

 If program execution is halted begin executing the MEASURE program.

After a few seconds, µVision2 halts execution. The program counter line in the
debug window marks the line in which the breakpoint occurred.

162 Chapter 7. Sample Programs

7

 Watch Variables
You may constantly view the contents of variables, structures, and arrays. Open
the Watch Window from the View menu or with the toolbar. The Locals page
shows all local symbols of the current function. The Watch #1 and Watch #2
pages allow you to enter any program variables as described in the following:

� Select the text <enter here> with a mouse click and wait a second. Another
mouse click enters edit mode that allows you to add variables. In the same
way you can modify variable values.

� Select a variable name in an Editor Window and open the local menu with a
right mouse click and use the command Add to Watch Window.

� You can enter WatchSet in the Output Window – Command page.

To remove a variable, click on the
line and press the Delete key.

Structures and arrays open on
demand when you click on the [+]
symbol. Display lines are indented
to reflect the nesting level.

The Watch Window updates at the end of each execution command. You enable
may enable Periodic Window Update in the View menu to update the watch
window during program execution.

Getting Started and Creating Applications 163

 7

Viewing and Modifying On-Chip Peripherals
µVision2 provides several ways to view and modify the on-chip peripherals used
in your target program. You may directly view the results of the example below
when you perform the following steps:

 Reset CPU and kill all defined breakpoints.

 If program execution is halted begin executing the MEASURE program.

 Open the Serial Window #1 and enter the ‘d’ command for the
MEASURE application. MEASURE shows the values from I/O Port2 and
A/D input 0 – 3. The Serial Window shows the following output:

You may now use the following procedures to supply input to the I/O pins.

164 Chapter 7. Sample Programs

7

Using Peripheral Dialog Boxes

µVision2 provides dialogs for: I/O Ports, Interrupts, Timers, A/D Converter,
Serial Ports, and chip-specific peripherals. These dialogs can be opened from
the Debug menu. For the MEASURE application you may open I/O Ports:Port4
and A/D Converter. The dialogs show the current status of the peripherals and
you may directly change the input values.

Each of these dialogs lists the related
SFR symbols and shows the current
status of the peripherals. To change
the inputs, change the values of the
Pins or Analog Input Channels.

Using VTREG Symbols

You may use the “CPU Pin Registers (VTREGs)” described on page 114 to
change input signals. In the Command page of the Output Window, you may
make assignments to the VTREG symbols just like variables and registers. For
example:

PORT4=0xDA set digital input PORT4 to 0xDA.
AIN1=3.3 set analog input AIN1 to 3.3 volts.

Getting Started and Creating Applications 165

 7

Using User and Signal Functions

You may combine the use of VTREG symbols defined
by the CPU driver and µVision2 user and signal
functions to create a sophisticated method of
providing external input to your target programs. The
“Analog Example” on page 146 shows a signal
function that provides input to AIN0. The signal
function is included in the MEASURE example and
may be quickly invoked with the Toolbox button
Analog0..5V and changes constantly the voltage on
the input AIN0.

166 Chapter 7. Sample Programs

7

Using the Performance Analyzer
µVision2 lets you perform timing analysis of your applications using the
integrated performance analyzer. To prepare for timing analysis, halt program
execution and open the Setup Performance Analyzer dialog with the Debug
menu.

You may specify the function names dialog box available from the Setup menu.

Perform the following steps to see the performance analyzer in action:

 Open the Performance Analyzer using the View menu or toolbar.

 Reset CPU and kill all breakpoints.

 If program execution is halted begin executing the MEASURE program.

 Select the Serial Window #1 and type the commands S Enter D Enter

Getting Started and Creating Applications 167

 7

The Performance Analyzer
shows a bar graph for each
range. The bar graph shows
the percent of the time spent
executing code in each
range. Click on the range to
see detailed timing statistics.
Refer to page 103 for more
information.

The MEASURE application may be also tested on a Keil MCB517 board or
other C515 or C517 starter kits. Refer to “Debugging with Monitor-51” on page
209.

Getting Started and Creating Applications 169

 8

Chapter 8. RTX-51 Real-Time
Operating System

RTX51 is a multitasking real-time operating system for the 8051 family. RTX51
simplifies system and software design of complex and time-critical projects.
RTX51 is a powerful tool to manage several jobs (tasks) on a single CPU. There
are two distinct versions of RTX51:

RTX51 Full which performs both round-robin and preemptive task switching
with 4 task priorities and can be operated with interrupt functions in parallel.
RTX51 supports signal passing; message passing with a mailbox system and
semaphores. The os_wait function of RTX51 can wait for the following events:
interrupt; timeout; signal from task or interrupt; message from task or interrupt;
semaphore.

RTX51 Tiny which is a subset of RTX51 Full. RTX51 Tiny easily runs on
single-chip systems without off-chip memory. However, program using RTX51
Tiny can access off-chip memory. RTX51 Tiny allows round-robin task
switching, supports signal passing and can be operated with interrupt functions
in parallel. The os_wait function of RTX51 Tiny can wait for the following
events: timeout; interval; signal from task or interrupt.

The rest of this section uses RTX-51 to refer to RTX-51 Full and RTX-51 Tiny.
Differences between the two are stated where applicable.

Introduction
Many microcontroller applications require simultaneous execution of multiple
jobs or tasks. For such applications, a real-time operating system (RTOS) allows
flexible scheduling of system resources (CPU, memory, etc.) to several tasks.
RTX-51 implements a powerful RTOS that is easy to use. RTX-51 works with
all 8051 derivatives.

You write and compile RTX-51 programs using standard C constructs and
compiling them with C51. Only a few deviations from standard C are required
in order to specify the task ID and priority. RTX-51 programs also require that
you include the RTX51.H or RTX51TNY.H header file. When you select in the
µVision2 dialog Options for Target - Target the operating system, the linker adds
the appropriate RTX-51 library file.

170 Chapter 8. RTX-51 Real-Time Operating System

8

Single Task Program
A standard C program starts execution with the main function. In an embedded
application, main is usually coded as an endless loop and can be thought of as a
single task that is executed continuously. For example:

int counter;

void main (void) {
counter = 0;

while (1) { /* repeat forever */
counter++; /* increment counter */

}
}

Round-Robin Task Switching
RTX51 Tiny allows a quasi-parallel, simultaneous execution of several tasks.
Each task is executed for a predefined timeout period. A timeout suspends the
execution of a task and causes another task to be started. The following example
uses this round-robin task switching technique.

Simple C Program using RTX51
#include <rtx51tny.h> /* Definitions for RTX51 Tiny */
int counter0;
int counter1;

job0 () _task_ 0 {

os_create_task (1); /* Mark task 1 as "ready" */

while (1) { /* Endless loop */
counter0++; /* Increment counter 0 */

}
}

job1 () _task_ 1 {
while (1) { /* Endless loop */
counter1++; /* Increment counter 1 */

}
}

RTX51 starts the program with task 0 (assigned to job0). The function
os_create_task marks task 1 (assigned to job1) as ready for execution. These
two functions are simple count loops. After the timeout period has been
completed, RTX51 interrupts job0 and begins execution of job1. This function
even reaches the timeout and the system continues with job0.

Getting Started and Creating Applications 171

 8

The os_wait Function
The os_wait function provides a more efficient way to allocate the available
processor time to several tasks. os_wait interrupts the execution of the current
task and waits for the specified event. During the time in which a task waits for
an event, other tasks can be executed.

Wait for Timeout
RTX51 uses an 8051 timer in order to generate cyclic interrupts (timer ticks).
The simplest event argument for os_wait is a timeout, where the currently
executing task is interrupted for the specified number of timer ticks. The
following uses timeouts for the time delay.

Program with os_wait Function
#include <rtx51tny.h> /* Definitions for RTX51 Tiny */

int counter0;
int counter1;

job0 () _task_ 0 {

os_create_task (1);

while (1) {
counter0++; /* Increment counter 0 */
os_wait (K_TMO, 3, 0); /* Wait 3 timer ticks */

}
}

job1 () _task_ 1 {
while (1) {
counter1++; /* Increment counter 1 */
os_wait (K_TMO, 5, 0); /* Wait 5 timer ticks */

}
}

This program is similar to the previous example with the exception that job0 is
interrupted with os_wait after counter0 has been incremented. RTX51 waits
three timer ticks until job0 is ready for execution again. During this time, job1 is
executed. This function also calls os_wait with a timeout of 5 ticks. The result:
counter0 is incremented every three ticks and counter1 is incremented every five
timer ticks.

172 Chapter 8. RTX-51 Real-Time Operating System

8

Wait for Signal
Another event for os_wait is a signal. Signals are used for task coordination: if
a task waits with os_wait until another task issues a signal. If a signal was
previously sent, the task is immediately continued.

Program with Wait for Signal.
#include <rtx51tny.h> /* Definitions for RTX51 Tiny */

int counter0;
int counter1;

job0 () _task_ 0 {

os_create_task (1);

while (1) {
if (++counter0 == 0) { /* On counter 0 overflow */
os_send_signal (1); /* Send signal to task 1 */

}
}

}

job1 () _task_ 1 {
while (1) {
os_wait (K_SIG, 0, 0); /* Wait for signal; no timeout */
counter1++; /* Increment counter 1 */

}
}

In this example, task 1 waits for a signal from task 0 and therefore processes the
overflow from counter0.

Preemptive Task Switching
The full version of RTX51 provides preemptive task switching. This feature is
not included in RTX51 Tiny. It is explained here to provide a complete
overview of multitasking concepts.

In the previous example, task 1 is not immediately started after a signal has
arrived, but only after a timeout occurs for task 0. If task 1 is defined with a
higher priority than task 0, by means of preemptive task switching, task 1 is
started immediately after the signal has arrived. The priority is specified in the
task definition (priority 0 is the default value).

Getting Started and Creating Applications 173

 8

RTX51 Technical Data
Description RTX-51 Full RTX-51 Tiny

Number of tasks 256; max. 19 tasks active 16
RAM requirements 40 .. 46 bytes DATA

20 .. 200 bytes IDATA (user stack)
min. 650 bytes XDATA

7 bytes DATA
3 * <task count> IDATA

Code requirements 6KB .. 8KB 900 bytes
Hardware requirements timer 0 or timer 1 timer 0
System clock 1000 .. 40000 cycles 1000 .. 65535 cycles
Interrupt latency < 50 cycles < 20 cycles
Context switch time 70 .. 100 cycles (fast task)

180 .. 700 cycles (standard task)
depends on stack load

100 .. 700 cycles
depends on stack load

Mailbox system 8 mailboxes with 8 integer entries
each

not available

Memory pool system up to 16 memory pools not available
Semaphores 8 * 1 bit not available

174 Chapter 8. RTX-51 Real-Time Operating System

8

Overview of RTX51 Routines
The following table lists some of the RTX-51 functions along with a brief
description and execution timing (for RTX-51 Full).

Function Description CPU Cycles

isr_recv_message † Receive a message (call from interrupt). 71 (with message)

isr_send_message † Send a message (call from interrupt). 53

isr_send_signal Send a signal to a task (call from interrupt). 46

os_attach_interrupt † Assign task to interrupt source. 119

os_clear_signal Delete a previously sent signal. 57

os_create_task Move a task to execution queue. 302

os_create_pool † Define a memory pool. 644 (size 20 * 10 bytes)

os_delete_task Remove a task from execution queue. 172

os_detach_interrupt † Remove interrupt assignment. 96

os_disable_isr † Disable 8051 hardware interrupts. 81

os_enable_isr † Enable 8051 hardware interrupts. 80

os_free_block † Return a block to a memory pool. 160

os_get_block † Get a block from a memory pool. 148

os_send_message † Send a message (call from task). 443 with task switch

os_send_signal Send a signal to a task (call from tasks). 408 with task switch
316 with fast task switch
71 without task switch

os_send_token † Set a semaphore (call from task). 343 with fast task switch
94 without task switch

os_set_slice † Set the RTX-51 system clock time slice. 67

os_wait Wait for an event. 68 for pending signal
160 for pending message

† These functions are available only in RTX-51 Full.

Additional debug and support functions in RTX-51 Full include the following:

Function Description

oi_reset_int_mask Disables interrupt sources external to RTX-51.

oi_set_int_mask Enables interrupt sources external to RTX-51.

os_check_mailbox Returns information about the state of a specific mailbox.

os_check_mailboxes Returns information about the state of all mailboxes in the system.

os_check_pool Returns information about the blocks in a memory pool.

os_check_semaphore Returns information about the state of a specific semaphore.

os_check_semaphores Returns information about the state of all semaphores in the system.

os_check_task Returns information about a specific task.

Getting Started and Creating Applications 175

 8

Function Description
os_check_tasks Returns information about all tasks in the system.

CAN Functions
The CAN functions are available only with RTX-51 Full. CAN controllers
supported include the Philips 82C200 and 80C592 and the Intel 82526. More
CAN controllers are in preparation.

CAN Function Description

can_bind_obj Bind an object to a task; task is started when object is received.

can_def_obj Define communication objects.

can_get_status Get CAN controller status.

can_hw_init Initialize CAN controller hardware.

can_read Directly read an object’s data.

can_receive Receive all unbound objects.

can_request Send a remote frame for the specified object.

can_send Send an object over the CAN bus.

can_start Start CAN communications.

can_stop Stop CAN communications.

can_task_create Create the CAN communication task.

can_unbind_obj Disconnect the binding between a task and an object.

can_wait Wait for reception of a bound object.

can_write Write new data to an object without sending it.

176 Chapter 8. RTX-51 Real-Time Operating System

8

TRAFFIC: RTX-51 Tiny Example Program
The TRAFFIC example is a pedestrian traffic light controller that shows the
usage of multitasking RTX-51 Tiny Real-time operating system. During a user-
defined time interval, the traffic light is operating. Outside this time interval, the
yellow light flashes. If a pedestrian pushes the request button, the traffic light
goes immediately into walk state. Otherwise, the traffic light works
continuously.

Traffic Light Controller Commands
The serial commands that TRAFFIC supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must
be terminated with a carriage return.

Command Serial Text Description
Display D Display clock, start, and ending times.
Time T hh:mm:ss Set the current time in 24-hour format.
Start S hh:mm:ss Set the starting time in 24-hour format. The traffic light controller

operates normally between the start and end times. Outside these
times, the yellow light flashes.

End E hh:mm:ss Set the ending time in 24-hour format.

Getting Started and Creating Applications 177

 8

Software
The TRAFFIC application is composed of three files that can be found in the
\KEIL\C51\EXAMPLES\TRAFFIC folder.

TRAFFIC.C contains the traffic light controller program that is divided into the
following tasks:
� Task 0 init: initializes the serial interface and starts all other tasks. Task 0

deletes itself since initialization is needed only once.
� Task 1 command: is the command processor for the traffic light controller.

This task controls and processes serial commands received.
� Task 2 clock: controls the time clock.
� Task 3 blinking: flashes the yellow light when the clock time is outside the

active time range.
� Task 4 lights: controls the traffic light phases while the clock time is in the

active time range (between the start and end times).
� Task 5 keyread: reads the pedestrian push button and sends a signal to the

task lights.
� Task 6 get_escape: If an ESC character is encountered in the serial stream

the command task gets a signal to terminate the display command.

SERIAL.C implements an interrupt driven serial interface. This file contains the
functions putchar and getkey. The high-level I/O functions printf and getline
call these basic I/O routines. The traffic light application will also operate
without using interrupt driven serial I/O. but will not perform as well.

GETLINE.C is the command line editor for characters received from the serial
port. This source file is also used by the MEASURE application.

178 Chapter 8. RTX-51 Real-Time Operating System

8

TRAFFIC Project

 Open the TRAFFIC.UV2 project file that is
located in \KEIL\C51\EXAMPLES\TRAFFIC folder
with µVision2. The source files for the
TRAFFIC project will be shown in the
Project Window – Files page.

 The RTX-51 Tiny Real-Time OS is selected under Options for Target.

 Build the TRAFFIC program with Project - Build or the toolbar button.

 Run the TRAFFIC Program

You can test TRAFFIC with the
µVision2 simulator.

The watch variables shown on the right
allow you to view port status that drives
the lights.

The push_key
signal function
simulates the
pedestrian
push key that
switches the
light system to
walk state.
This function
is called with
the Push for

Use Debug – Function Editor to open TRAFFIC.INC. This file is specified

Getting Started and Creating Applications 179

 8

the Push for
Walk toolbar
button.

under Options for Target – Debug – Initialization File and defines the
signal function push_key, the port initialization and the toolbar button.

Note: the VTREG symbol Clock is literalized with a back quote (`),

 since there is a C function named clock in the TRAFFIC.C module.
Refer to “Literal Symbols” on page 121 for more information.

 Now run the TRAFFIC application. Enable View – Periodic Window
Update to view the lights in the watch window during program execution.

 The Serial Window #1 displays the printf output and allows you to enter
the traffic light controller commands described in the table above.

Set the clock
time outside of
the start/end
time interval
to flash the
yellow light.

180 Chapter 8. RTX-51 Real-Time Operating System

8

RTX Kernel Aware Debugging
A RTX application can be tested with the same methods and commands as
standard 8051 applications. When you select an Operating System under
Options for Target – Target, µVision2 enables additional debugging features:
a dialog lists the operating system status and with the _TaskRunning_ debug
function you may stop program execution when a specific task is active.

The following section exemplifies RTX debugging with the TRAFFIC example.

 Stop program execution, reset the CPU and kill all breakpoints.

An RTX-51 application can be tested in the same way as standard
applications. You may open source files, set break points and single step
through the code. The TRAFFIC application starts with task 0 init.

µVision2 is completely kernel aware. You may display the task status
with the menu command Peripherals – RTX Tiny Tasklist.

Getting Started and Creating Applications 181

 8

The dialog RTX51 Tiny Tasklist gives you the following information:

Heading Description

TID task_id used in the definition of the task function.

Task Name name of the task function.

State task state of the function; explained in detail in the next table.

Wait for
Event

event the task is waiting for; the following events are possible (also in combination):
Timeout: the task Timer is set to the duration is specified with the os_wait function
call. After the Timer decrements to zero, the task goes into Ready state.
Interval: the time interval specified with os_wait is added to the task Timer value.
After the Timer decrements to zero, the task goes into Ready state.
Signal: the os_wait function was called with K_SIG and the task waits for Sig = 1.

Sig status of the Signal bit that is assigned to this task.
Timer value of the Timer that is assigned to this task. The Timer value decrements with

every RTX system timer tick. If the Timer becomes zero and the task is waiting for
Timeout or Interval the task goes into Ready state.

Stack value of the stack pointer (SP) that is used when this task is Running.
RTX-51 Tiny contains an efficient stack management that is explained in the "RTX51 Tiny" User’s

Guide, Chapter 5: RTX51 Tiny, Stack Management.
This manual provides detailed information about the Stack value.

State Task State of a RTX51 Task Function

Deleted Tasks that are not started are in the Deleted state.
Ready Tasks that are waiting for execution are in the Ready state. After the currently

Running task has finished processing, RTX starts the next task that is in the Ready
state.

Running The task currently being executed is in the Running state. Only one task is in the
Running state at a time.

Timeout Tasks that were interrupted by a round-robin timeout are in the Timeout state. This
state is equivalent to Ready; however, a round-robin task switch is marked due to
internal operating procedures.

Waiting Tasks that are waiting for an event are in the Waiting state. If the event occurs which
the task is waiting for, this task then enters the Ready state.

182 Chapter 8. RTX-51 Real-Time Operating System

8

The Debug – Breakpoints… dialog allows you to define breakpoints that stop
the program execution only when the task specified in the _TaskRunning_
debug function argument is Running. Refer to “Predefined Functions” on page
134 for a detailed description of the _TaskRunning_ debug function.

The breakpoint at the function signalon stops execution only

 if lights is the current Running task.

Getting Started and Creating Applications 183

 9

Chapter 9. Using On-chip Peripherals
There are a number of techniques you must know to create programs that utilize
the various on-chip peripherals and features of the 8051 family. Many of these
are described in this chapter. You may use the code examples provided here to
quickly get started working with the 8051.

There is no single standard set of on-chip peripherals for the 8051 family.
Instead, 8051 chip vendors use a wide variety of on-chip peripherals to
distinguish their parts from each other. The code examples in this chapter
demonstrate how to use the peripherals of a particular chip or family. Be aware
that there are more configuration options than are presented in this text.

Topic Page

Special Function Registers 183
Register Banks 184
Interrupt Service Routines 185
Parallel Port I/O 187
Timers/Counters 189
Serial Interface 190
Watchdog Timer 193
D/A Converter 194
A/D Converter 195
Power Reduction Modes 196

NOTE
The code examples presented here
were tested using the µVision2
Debugger. Each of the examples
may be downloaded from the Keil
web site by selecting the
appropriate chip from the on-line
device database at
www.keil.com/dd.

Special Function Registers
The on-chip peripherals of the 8051 are
accessed using special function registers or
SFRs. SRFs are located in on-chip directly
addressable memory from 80h to 0FFh. The
Keil development tools provide include files
or header files that define these registers for
you. You may include the provided header
files or you may create and include your own
header files to access the on-chip peripherals.

When you are creating projects with
µVision2 you can insert the special function
register definition of the device via the local
menu in an editor window.

Use the local editor menu to insert

correct register header files.

184 Chapter 9. Using On-chip Peripherals

9

 Many of the example programs presented in this chapter begin with a line of
code that is similar to the following:

#include <reg51.h>

The register definition files are located in the folder C:\KEIL\C51\INC or in sub-
folders. The following excerpt from such a register definition file shows the
definitions for the parallel I/O ports.

sfr P0 = 0x80; // 8-bit I/O Port P0
sfr P1 = 0x90; // 8-bit I/O Port P1
sfr P2 = 0xA0; // 8-bit I/O Port P2
sfr P3 = 0xB0; // 8-bit I/O Port P3

You may define own SFR symbols directly in your C source or header files.
The C51 compiler supports both: byte SFR and bit SFR symbols as shown in the
following example:

sfr IE = 0xA8; // Interrupt Enable register at SFR address 0xA8
sbit EA = IE^7; // global Interrupt Enable Flag (bit 7 of SFR IE)

NOTES
Before you can read from or write to a Special Function Register, you must
declare the SFR symbol in your source file.

Bit SFR symbols can be defined only for bit-addressable SFR registers that are
located on sfr address 0x80, 0x88, 0x90, .. 0xF8.

Register Banks
The 8051 is an accumulator-based microcontroller with eight general-purpose
registers (R0-R7). Each register is a single byte register. All eight
general-purpose registers may be considered a bank of registers or a register
bank.

The 8051 provides four register banks you can use. The primary reason for
multiple register banks becomes apparent when you use interrupts.

For typical 8051 C programs there is no need to select or switch register banks.
Register bank 0 is used by default.

Register bank 1, 2, or 3 are best used in interrupt service routines to avoid saving
and restoring registers on the stack.

Getting Started and Creating Applications 185

 9

Interrupt Service Routines
The C51 compiler lets you write interrupt service routines in C. The compiler
generates very efficient entry and exit code and accommodates register bank
switching. Interrupt routines are declared as follows:

void function_name (void) interrupt interrupt_number �using register_bank�

The interrupt_number determines the interrupt vector address of the interrupt
function. Use the following table to determine the interrupt number.

Interrupt Number Address Interrupt Number Address

0 (EXTERNAL INT 0) 0003h 16 0083h
1 (TIMER/COUNTER 0) 000Bh 17 008Bh
2 (EXTERNAL INT 1) 0013h 18 0093h
3 (TIMER/COUNTER 1) 001Bh 19 009Bh
4 (SERIAL PORT) 0023h 20 00A3h
5 (TIMER/COUNTER 2) 002Bh 21 00ABh
6 (PCA) 0033h 22 00B3h

7 003Bh 23 00BBh
8 0043h 24 00C3h
9 004Bh 25 00CBh
10 0053h 26 00D3h
11 005Bh 27 00DBh
12 0063h 28 00E3h
13 006Bh 29 00EBh
14 0073h 30 00F3h
15 007Bh 31 00FBh

The using attribute lets you specify a register_bank that is selected during the
execution of the interrupt function. Small interrupt routines might be more
efficient without the using attribute, since they use the default register bank 0.
You should compare the assembly code generated both with and without the
using directive to see which is more efficient in your application.

NOTE
Functions that are invoked from an interrupt procedure should be compiled with
the NOAREGS directive. This ensures that the compiler does not generate
absolute register accesses

186 Chapter 9. Using On-chip Peripherals

9

The following example program shows a typical interrupt function:

#include <reg51.h> // Special Function Registers of 80C51 CPU

#pragma NOAREGS // do not use absolute register symbols (ARx)
// for functions called from interrupt routines.

static void HandleTransmitInterrupt (void) {
:
:

}

static void HandleReceiveInterrupt (void) {
:
:

}

#pragma AREGS // for other code it is save to use ARx symbols

static void com_isr (void) interrupt 4 using 1 {
if (TI) HandleTransmitInterrupt ();
if (RI) HandleReceiveInterrupt ();

}

In the example above an interrupt service routine for interrupt number 4 is
defined. The name of the interrupt function is com_isr. Once the interrupt is
invoked, the entry code saves CPU registers and selects register bank 1. When
the interrupt service routine exits, the CPU registers are restored.

The following listing shows the code generated by the C51 compiler for the
above interrupt routine. Note that the register bank context is swapped on entry
to the interrupt routine and is restored on exit.

; FUNCTION com_isr (BEGIN)
0000 C0E0 PUSH ACC ; Save the Accumulator and Data
Pointer
0002 C083 PUSH DPH
0004 C082 PUSH DPL
0006 C0D0 PUSH PSW ; Save PSW (and the current Register
Bank)
0008 75D008 MOV PSW,#08H ; This selects Register Bank 1

:
:

0052 D0D0 POP PSW ; Restore PSW (and prior reg bank)
0054 D082 POP DPL
0056 D083 POP DPH
0058 D0E0 POP ACC ; Restore the Accumulatorand DPTR
005A 32 RETI

; FUNCTION com_isr (END)

Getting Started and Creating Applications 187

 9

Interrupt Enable Registers
The 8051 provides interrupt services for many on-chip peripheral events.
Interrupts are globally enabled and disabled using the EA bit of the Interrupt
Enable (IE) SFR. When EA is set to 1, interrupts are enabled. When EA is set
to 0, interrupts are disabled.

Each interrupt is individually controlled through bits in the IE SFR. On some
8051 derivatives there may be more than one IE register. Check the
documentation for the chip you use to determine what interrupts are available.

NOTE
In order for an interrupt service routine to execute when an interrupt occurs, the
interrupt enable SFR for that interrupt must be set and the EA SFR must be set.

In addition to the IE register, many 8051 derivatives allow you to assign a
priority level to each interrupt using an Interrupt Priority (IP) SFR. Check the
documentation for your microcontroller to determine how to use the interrupt
priorities.

Parallel Port I/O
The standard 8051 provides four parallel I/O ports you may use for your target
application. These are Port 0, Port 1, Port2, and Port 3. Some derivatives of the
8051 have as many as eight I/O ports.

Port Direction Width Alternate Use

P0 I/O 8 bits Mux’d. 8-bit bus: A0-A7 & D0-D7

P1 I/O 8 bits P1.0-P1.7: Available for User I/O

P2 I/O 8 bits Mux’d. 8-bit bus: A8-A15

P3 I/O 8 bits P3.0: RXD (Serial Port Receive)
P3.1: TXD (Serial Port Transmit)
P3.2: /INT0 (Interrupt 0 Input)
P3.3: /INT1 (Interrupt 1 Input)
P3.4: T0 (Timer/Counter 0 Input)
P3.5: T1 (Timer/Counter 1 Input)
P3.6: /WR (Write Data Control)
P3.7: /RD (Read Data Control)

The ports on a standard 8051 do not have data direction registers. Instead, the
pins of Port 1, Port 2, and Port 3 each have internal pull-ups that allow them to

188 Chapter 9. Using On-chip Peripherals

9

be either inputs or outputs. To write to a port, you simple write the value you
want to appear on the port pins. To read from a port, you must first write a 1 to
the desired port bit (which is also the initial value after chip RESET).

The following example program shows how to read and write to I/O pins.

sfr P1 = 0x90; // SFR definition for Port 1
sfr P3 = 0xB0; // SFR definition for Port 3

sbit DIPswitch = P1^4; // DIP switch input on Port 1 bit 4
sbit greenLED = P1^5; // green LED output on Port 1 bit 5

void main (void) {
unsigned char inval;

inval = 0; // initial value for inval
while (1) {
if (DIPswitch == 1) { // check if input P1.4 is high
inval = P1 & 0x0F; // read bit 0 .. 3 from P1
greenLED = 0; // set output P1.5 to low

}
else { // if input P1.4 is low
greenLED = 1; // set output P1.5 to high

}

P3 = (P3 & 0xF0) | inval; // output inval to P3.0 .. P3.3
}

}

Getting Started and Creating Applications 189

 9

Timers/Counters
The 80C52 has three timer/counter units (Timer 0, Timer 1, and Timer 2).
Timer 0 and Timer 1 are very similar and offer the same functionality while
Timer 2 offers enhanced capability. Each timer may operate independently in a
number of different modes including timer mode, counter mode, and baud rate
generator mode (for the serial port).

The following example program shows how to use Timer 1 to generate a 10 KHz
timer tick interrupt for timing purposes when you run it on a standard 80C51
device with 12 MHz XTAL frequency. The timer tick interrupt increments the
overflow_count variable once for each interrupt. The main C function
initializes the timer loops forever inside the while (1) loop.

#include <reg52.h>

/*
* Timer 1 Interrupt Service Routine: executes every 100 clock cycles
*/

static unsigned long overflow_count = 0;

void timer1_ISR (void) interrupt 3 {
overflow_count++; // Increment the overflow count

}

/*
* MAIN C function: sets Timer1 for 8-bit timer w/reload (mode 2).
* The timer counts to 255, overflows, is reloaded with 156, and
* generates an interrupt.
*/

void main (void) {
TMOD = (TMOD & 0x0F) | 0x20; // Set Mode (8-bit timer with reload)

TH1 = 256 - 100; // Reload TL1 to count 100 clocks
TL1 = TH1;
ET1 = 1; // Enable Timer 1 Interrupts
TR1 = 1; // Start Timer 1 Running
EA = 1; // Global Interrupt Enable

while (1); // Do Nothing (endless-loop): the timer 1 ISR will
// occur every 100 clocks. Since the 80C51 CPU runs
// at 12 MHz, the interrupt happens 10 KHz.

}

190 Chapter 9. Using On-chip Peripherals

9

Serial Interface
The 8051 includes a standard RS-232 compatible serial port you may use with
your application programs. The 8051 uses port pins P3.1 and P3.0 for transmit
and receive respectively. There are several SFRs that you must properly
configure before the serial port will function.

The 8051 provides full interrupt control for the serial port transmit and receive
operations. You may poll the serial port control registers to determine when a
character has been received or when the next character may be sent or you may
create interrupt routines to handle these operations.

The serial interface is configured with the SFR registers SBUF, SCON and
PCON. In addition, you must also configure Timer 1 or Timer 2 as the baud
rate generator.

The following example program shows how to perform interrupt-driven serial
I/O using the 8051 serial port. Interrupt routines in this example handle transmit
interrupts and receive interrupts using 8-byte circular buffers. Routines are
provided to transmit (putbuf and putchar) and receive (_getkey) characters and
to initialize the serial channel (com_initialize). This source code can be used as
replacement for the library routines putchar and _getkey. This also allows the
printf, scanf and other library functions to work with the interrupt-driven I/O
routines in this example.

#include <reg51.h>
#include <stdio.h>

#define XTAL 11059200 // CPU Oscillator Frequency
#define baudrate 9600 // 9600 bps communication baudrate

#define OLEN 8 // size of serial transmission buffer
unsigned char ostart; // transmission buffer start index
unsigned char oend; // transmission buffer end index
char idata outbuf[OLEN]; // storage for transmission buffer

#define ILEN 8 // size of serial receiving buffer
unsigned char istart; // receiving buffer start index
unsigned char iend; // receiving buffer end index
char idata inbuf[ILEN]; // storage for receiving buffer

bit sendfull; // flag: marks transmit buffer full
bit sendactive; // flag: marks transmitter active

/*
* Serial Interrupt Service Routine
*/
static void com_isr (void) interrupt 4 using 1 {
char c;

Getting Started and Creating Applications 191

 9

/*----- Received data interrupt. --*/
if (RI) {
c = SBUF; // read character
RI = 0; // clear interrupt request flag
if (istart + ILEN != iend) {
inbuf[iend++ & (ILEN-1)] = c; // but character into buffer

}
}

/*------ Transmitted data interrupt. ------------------------------------*/
if (TI != 0) {
TI = 0; // clear interrupt request flag
if (ostart != oend) { // if characters in buffer and
SBUF = outbuf[ostart++ & (OLEN-1)]; // transmit character
sendfull = 0; // clear 'sendfull' flag

}
else { // if all characters transmitted
sendactive = 0; // clear 'sendactive'

}
}

}

/*
* Function to initialize the serial port and the UART baudrate.
*/
void com_initialize (void) {
istart = 0; // empty transmit buffers
iend = 0;
ostart = 0; // empty transmit buffers
oend = 0;
sendactive = 0; // transmitter is not active
sendfull = 0; // clear 'sendfull' flag

// Configure timer 1 as a baud rate generator
PCON |= 0x80; // 0x80=SMOD: set serial baudrate doubler
TMOD |= 0x20; // put timer 1 into MODE 2
TH1 = (unsigned char) (256 - (XTAL / (16L * 12L * baudrate)));
TR1 = 1; // start timer 1

SCON = 0x50; // serial port MODE 1, enable serial receiver
ES = 1; // enable serial interrupts

}

/*
* putbuf: write a character to SBUF or transmission buffer
*/
void putbuf (char c) {
if (!sendfull) { // transmit only if buffer not full
if (!sendactive) { // if transmitter not active:
sendactive = 1; // transfer first character direct
SBUF = c; // to SBUF to start transmission

}
else {
ES = 0; // disable serial interrupts during buffer update
outbuf[oend++ & (OLEN-1)] = c; // put char to transmission buffer
if (((oend ^ ostart) & (OLEN-1)) == 0) {
sendfull = 1;

} // set flag if buffer is full
ES = 1; // enable serial interrupts again

192 Chapter 9. Using On-chip Peripherals

9

}
}

}

/*
* Replacement routine for the standard library putchar routine.
* The printf function uses putchar to output a character.
*/
char putchar (char c) {
if (c == '\n') { // expand new line character:
while (sendfull); // wait until there is space in buffer
putbuf (0x0D); // send CR before LF for <new line>

}
while (sendfull); // wait until there is space in buffer
putbuf (c); // place character into buffer
return (c);

}

/*
* Replacement routine for the standard library _getkey routine.
* The getchar and gets functions uses _getkey to read a character.
*/
char _getkey (void) {
char c;
while (iend == istart) {
; // wait until there are characters

}
ES = 0; // disable serial interrupts during buffer update
c = inbuf[istart++ & (ILEN-1)];
ES = 1; // enable serial interrupts again
return (c);

}

/*
* Main C function that start the interrupt-driven serial I/O.
*/
void main (void) {
EA = 1; /* enable global interrupts */

com_initialize (); /* initialize interrupt driven serial I/O */

while (1) {
char c;
c = getchar ();
printf ("\nYou typed the character %c.\n", c);

}
}

Getting Started and Creating Applications 193

 9

Watchdog Timer
The 8051Fx family of microcontrollers include a Programmable Counter Array
(PCA) with a watchdog timer. You can use the watchdog as a method of
recovery from hardware or software failures. The watchdog timer counts up. If
the timer count matches a value stored in the PCA module 4 SFRs, the watchdog
resets the MCU.

Your application must periodically update the PCA 4 value to avoid a watchdog
reset. If your program does not reset the watchdog timer frequently enough or if
your program crashes, the watchdog timer overflows and resets the CPU.

The following example code shows how to initialize the watchdog timer and
how to reset it.

#include <reg51f.h>
/* This function adjusts the watchdog timer compare value to the current
* PCA timer value + 0xFF00. Note that you must write to CCAP4L first,
* then write to CCAP4H. */
void watchdog_reset (void) {
unsigned char newval;

newval = CH + 0xFF;
CCAP4L = 0;
CCAP4H = newval;

}

void main (void) {
unsigned int i;

/* Configure PCA Module 4 as the watchdog and make
sure it doesn't time-out immediately. */
watchdog_reset ();
CCAPM4 = 0x48;

/* Configure the PCA for watchdog timer. */
CMOD = (CMOD & 0x01) | 0x40;

/* Start the PCA Timer: From this point on, we must reset the watchdog
timer every 0xFF00 clock cycles. If we don't, the watchdog timer
will reset the MCU. */
CR = 1;

/* Do something for a while and make sure that we don't get reset by
the watchdog. */
for (i = 0; i < 1000; i++) {
watchdog_reset ();

}

/* Stop updating the watchdog and we should get reset. */
while (1);

}

194 Chapter 9. Using On-chip Peripherals

9

D/A Converter
A D/A converter takes a digital input and outputs an analog voltage on one of the
pins of the microcontroller. The Philips 87LPC769 is one of the many devices
that offers built-in D/A converters.

The Philips 87LPC769 provides a 2-channel, 8-bit D/A converter that is easy to
program. The following example code shows how to initialize the D/A converter
and output voltages using the D/A SFRs..

/*
* This program generates sawtooth waveforms on the DAC
* of the Philips 87LPC769.
*/
#include <REG769.H>

void main (void) {
// Disable the A/D Converter (this is required for DAC0)

ADCI = 0; // Clear A/D conversion complete flag
ADCS = 0; // Clear A/D conversion start flag
ENADC = 0; // Disable the A/D Converter

// Set P1.6 and P1.7 to Input Only (Hi Z).
P1M2 &= ~0xC0;
P1M1 |= 0xC0;

ENDAC0 = 1; // Enable the D/A Converters
ENDAC1 = 1;

while (1) {
unsigned int i;

// Create a sawtooth wave on DAC0 and the
// opposite sawtooth wave on DAC1.

for (i = 0; i < 0x100; i++) {
DAC0 = i;
DAC1 = 0xFF - i;

}
}

}

Getting Started and Creating Applications 195

 9

A/D Converter
The Analog Devices ADuC812 provides 8 channels of 12-bit analog to digital
conversion. Voltages presented to the analog input pins are converted to digital
values and may be read from the A/D data registers.

The on-chip A/D converter may be configured for a number of conversion
modes. It can generate an interrupt when a conversion has completed.
The following example code shows how to initialize the A/D converter to
cyclically convert each analog input channel and how to read and output the
conversion results.

#include <ADUC812.H>
#include <stdio.h>

void main (void) {
unsigned char chan_2_convert;

SCON = 0x50; // Configure the serial port.
TMOD |= 0x20;
TH1 = 0xA0;
TR1 = 1;
TI = 1;

// Configure A/D to sequentially convert each input channel.
ADCCON1 = 0x7C; // 0111 1100
while (1) {
unsigned int conv_val;
unsigned char channel;

// Start a conversion and wait for it to complete.
chan_2_convert = (chan_2_convert + 1) % 8;
ADCCON2 = (ADCCON2 & 0xF0) | chan_2_convert;
SCONV = 1;
while (ADCCON3 & 0x80);

// Read A/D data and print it out.
channel = ADCDATAH >> 4;
conv_val = ADCDATAL | ((ADCDATAH & 0x0F) << 8);

printf ("ADC Channel %bu = 0x%4.4X\r\n", channel, conv_val);
}

}

196 Chapter 9. Using On-chip Peripherals

9

Power Reduction Modes
The 8051Fx offers two different power saving modes you may invoke: Idle
Mode and Power Down Mode.

Idle Mode halts the CPU but lets interrupts, timer, and serial port functions
continue operating. When an interrupt condition occurs, Idle Mode is canceled.
Power consumption can be greatly decreased in idle mode.

Power Down Mode halts both the CPU and peripherals. It is canceled by a
hardware reset or an external interrupt condition.

To enter Idle Mode, your program must set the IDL bit in the PCON SFR. You
may do this directly in C as demonstrated by the following program.

sfr PCON = 0x87;

void main (void) {
while (1) {
task_a ();
task_b ();
task_c ();

PCON |= 0x01; /* Enter IDLE Mode - Wait for enabled interrupt */
}

}

To enter Power Down Mode, your application must set the PD bit in the PCON
SFR as demonstrated in the following program.

sfr PCON = 0x87;

void main (void) {
while (1) {
task_a ();
task_b ();
task_c ();

PCON |= 0x02; /* Enter Power Down Mode */
}

}

Getting Started and Creating Applications 197

 10

Chapter 10. CPU and C Startup Code
The STARTUP.A51 file contains the startup code for a C51 target program. This
source file is located in the LIB directory. Include a copy of this file in each
8051 project that needs custom startup code.

This code is executed immediately upon reset of the target system and optionally
performs the following operations, in order:

� Clears internal data memory
� Clears external data memory
� Clears paged external data memory
� Initializes the small model reentrant stack and pointer
� Initializes the large model reentrant stack and pointer
� Initializes the compact model reentrant stack and pointer
� Initializes the 8051 hardware stack pointer
� Transfers control to the main C function

The STARTUP.A51 file provides you with assembly constants that you may
change to control the actions taken at startup. These are defined in the following
table.

Constant Name Description

IDATALEN Indicates the number of bytes of idata that are to be initialized to 0.
The default is 80h because most 8051 derivatives contain at least
128 bytes of internal data memory. Use a value of 100h for the
8052 and other derivatives that have 256 bytes of internal data
memory.

XDATASTART Specifies the xdata address to start initializing to 0.

XDATALEN Indicates the number of bytes of xdata to be initialized to 0. The
default is 0.

PDATASTART Specifies the pdata address to start initializing to 0.

PDATALEN Indicates the number of bytes of pdata to be initialized to 0. The
default is 0.

IBPSTACK Indicates whether or not the small model reentrant stack pointer
(?C_IBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

198 Chapter 10. CPU and C Startup Code

10

Constant Name Description

IBPSTACKTOP Specifies the top start address of the small model reentrant stack
area. The default is 0xFF in idata memory.
C51 does not check to see if the stack area available satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

XBPSTACK Indicates whether or not the large model reentrant stack pointer
(?C_XBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

XBPSTACKTOP Specifies the top start address of the large model reentrant stack
area. The default is 0xFFFF in xdata memory.
C51 does not check to see if the available stack area satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

PBPSTACK Indicates whether the compact model reentrant stack pointer
(?C_PBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

PBPSTACKTOP Specifies the top start address of the compact model reentrant stack
area. The default is 0xFF in pdata memory.
C51 does not check to see if the available stack area satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

PPAGEENABLE Enables (a value of 1) or disables (a value of 0) the initialization of
port 2 of the 8051 device. The default is 0. The addressing of port 2
allows the mapping of 256 byte variable memory in any arbitrary
xdata page.

PPAGE Specifies the value to write to Port 2 of the 8051 for pdata memory
access. This value represents the xdata memory page to use for
pdata. This is the upper 8 bits of the absolute address range to use
for pdata.
For example, if the pdata area begins at address 1000h (page 10h)
in the xdata memory, PPAGEENABLE should be set to 1, and
PPAGE should be set to 10h. The BL51 Linker/Locator must
contain a value between 1000h and 10FFh in the PDATA control
directive. For example:
BL51 <input modules> PDATA (1050H)

Neither BL51 nor C51 checks to see if the PDATA control directive
and the PPAGE assembler constant are correctly specified. You
must ensure that these parameters contain suitable values.

Getting Started and Creating Applications 199

 11

Chapter 11. Using Monitor-51
The Keil Monitor-51 allows you to debug programs on your target hardware
using the µVision2 Debugger. You connect the µVision2 Debugger to your
8051 target board using a serial cable.

To get started, you must properly configure and install Monitor-51 on your target
hardware. Configuration and installation of the Monitor is explained in the file
\KEIL\C51\MON51\MON51.PDF.

Caveats
There are only a few drawbacks to using Monitor-51.

� The Monitor requires that programs you debug are located in RAM space.
This is required because breakpoints are set by replacing instructions in your
program with an ACALL instruction. This operation, while completely
transparent, may have side-effects that affect the operation of your target
program. Refer to “Breakpoint Side Effects” on page 203 for more
information.

� You will most likely have to relocate your startup code, program code
segments, and interrupt vector table.

� You may enable or disable the HALT command on the toolbar in µVision2
Debugger. If you enable this feature, using Stop Program Execution with
Serial Interrupt check box under Options – Debug – Keil Monitor-51
Driver Settings, the µVision2 Debugger and the monitor use the 8051 serial
interrupt vector to signal that the target program should stop running.

200 Chapter 11. Using Monitor-51

11

Hardware and Software Requirements
The following requirements must be met for Monitor-51 to operate correctly.

� The CPU must be an 8051 or derivative.
� The monitor requires 5 Kbyte external code memory (EPROM) starting at

address 0.
� 256 Bytes of external data memory (XDATA RAM) is required. 5 Kbytes of

trace buffer is optional. You must have enough external data memory to hold
the complete application (code and data). All external data memory areas
must be von Neumann wired—access must be possible from XDATA and
CODE space. A common way to do this is to connect the /PSEN and /RD
CPU signals to the inputs of an AND gate and the output of the AND gate to
the /RD pin of the RAM.

� The monitor uses a serial interface with a timer as the baudrate generator.
� Between 1 and 5 port pins are necessary if you use banked hardware (for 2-32

banks). For details on banking hardware, refer to the example hardware
schematics in the 8051 Utilities User’s Guide, Chapter 1 “Bank Switching
Configuration”. All memory banks must be von Neumann wired.

� The monitor uses an additional 6 bytes of stack space (IDATA) in the user
program to be tested.

All other hardware components can be used by the application.

Getting Started and Creating Applications 201

 11

Serial Transmission Line
Monitor-51 requires the following signals from the RS232 or V.24 line:
TRANSMIT DATA, RECEIVE DATA, and SIGNAL GROUND. In many
cases, additional connections are necessary in the serial connectors to enable
transmit and receive data.

PIN connections of various computer systems

25 Pin Connector 9 Pin Connector

Signal Name Pin Description Signal Name Pin Description

RxD 3 Receive data RxD 2 Receive data
TxD 2 Transmit data TxD 3 Transmit data
Gnd 7 Signal ground Gnd 5 Signal ground

In addition to the above, you may be required to connect pin 7 to pin 8 and pin 1
to pin 4 and pin 6.

µVision2 Monitor Driver
µVision2 interfaces to target systems when you select Use: Keil Monitor-51
Driver in the dialog Options – Debug.

Click on Settings to open the
dialog Monitor Driver
Settings that allows you to
configure various parameters
such as COM port and
baudrate. Refer to “Set
Debug Options” on page 102
for more information about
the Debug dialog.

202 Chapter 11. Using Monitor-51

11

The following table describes the Monitor Driver Settings page:

Dialog Item Description

Comm Port Settings Select the PC COM port and the baudrate you want to use. If you have
problems with your target hardware, try the Baudrate 9600.
Sometimes not standard baudrates allow to use a different crystal frequency
on a target board without having to reinstall Monitor-51. Example: A target
board running at 12 MHz and 9600 bps can be modified to a 16MHz and
12800 bps by just exchanging the crystal.

Stop Program
Execution with

When Serial interrupt is enabled, you can terminate a running application
program with the Stop toolbar button or the ESC key in the Command page.
To support this, the serial interface is not longer available for the user
program. In addition, it is not allowed to reset the global Interrupt Enable
(SFR Bit EA in IE.7) in your application.

Cache Options To speed up the screen update, the Monitor driver implements several data
caches. If you want to view the actual value of port pins, timers or memory
mapped external peripherals you can switch off the cache for this memory
area. To get the maximum performance you should enable all caches.

µVision2 Restrictions when using
Monitor-51
The memory mapping of a CPU board with Monitor-51 is selected with
hardware components. It is not possible to use Debug – Memory Map to
change the memory mapping of the target system.

The Performance Analyzer, Call Stack, Code Coverage features, and the Step
Out command are not available with Monitor-51. Also the option View –
Periodic Window Update cannot be used with Monitor-51.

Breakpoint Options are handled directly by Monitor-51. However, when
access or conditional breakpoints are set, the application is executed in single
steps and not in real time. Single step execution is at least 1000 times slower.

Getting Started and Creating Applications 203

 11

Breakpoint Side Effects
When debugging programs it is sometimes necessary to stop the running of
programs in order to check the system and eventually to correct any errors. To
perform a breakpoint Monitor-51 writes a ACALL instruction in the user
program. The advantage of this method is, that no additional hardware is
required for the breakpoint logic. But with this method breakpoints can only be
set in RAM memory. A second disadvantage is that a ACALL instruction
occupies two bytes. Therefore, it can be dangerous, to set a breakpoint on a
one-byte instruction, if a label (jump target) is after this instruction. The
following example demonstrates this problem.

Test Program
8000 E4 CLR A
8001 04 INC A
. . .
. . .
. . .
8010 80 ED SJMP 8001

First, the user program is executed until address 8010 with the following
command.

>G 8000, 8010.

Afterwards, a breakpoint is set at address 8000. The breakpoint is realized by
writing a ACALL instruction into the user program; this means that the user
program is modified by the breakpoint.

Modified Test Program

8000 11 CLR A ; An ACALL instruction is
8002 XX INC A ; written at address 8000.
. . .
. . . ; Address 8001 is
. . . ; occupied by the target of
8010 80 ED SJMP 8001 ; the ACALL instruction.

If the interrupted program is continued at address 8010, the execution is not
stopped at 8000. The reason is, that the user program jumps to address 8001 after
the execution of the SJMP instruction. But at this address the second byte of the
ACALL instruction resides in memory—not the INC instruction. Therefore the
program execution at this point is unpredictable.

204 Chapter 11. Using Monitor-51

11

The user has to check that the ACALL instruction of a breakpoint overwrites no
important OP codes. If needed, the user program should be executed by the
Trace command. The Trace mode executes all instructions without conflicts.

Tool Configuration when Using Monitor-
51
When you use Monitor-51, the complete target application is stored in von
Neumann mapped RAM. This means that the code memory and xdata memory
are accessing the same physical memory space. This is required, since the 8051
hardware is not able to write into code space and the Monitor changes the
program code to set breakpoints in your application.

Therefore the Eprom and RAM areas that are entered in the dialog Options –
Target – Off-chip Memory must be non-overlapping physical memory areas.
These ranges are supplied to the Linker if you have enabled the option Use
Memory Layout from Target Dialog in the L51 Locate dialog page.
Therefore you should also check that this option is set.

For debugging with Monitor-51 the code and xdata space of the user application must be

non-overlapping memory areas. Otherwise the user application overwrites the program code
when xdata variables are accessed.

Getting Started and Creating Applications 205

 11

Using Stop Program Execution with Serial
Interrupt
When you have enabled the option Stop Program Execution with Serial
Interrupt, the Monitor-51 uses the serial interrupt of the UART. If you are
using the standard 8051 UART, three bytes at the interrupt vector location
C:0x0023 are modified by Monitor-51. You must ensure that the user program
does not use these code locations. This can be done with the following C
statements:

char code reserve [3] _at_ 0x23; /* for Monitor-51 serial interrupt */

When the Monitor-51 is Installed at Code
Address 0
If you want to test a C program with Monitor-51 and if the Monitor-51 is
installed at code address 0, consider the following rules (the specification refers
to a target system where the available code memory for user programs starts at
address 0x8000):

� All C modules which contain interrupt functions must be translated with the
control directive INTVECTOR (0x8000). This option can be set under
µVision2 in the dialog Project Options - C51 - Interrrupt vectors at
address.

� Copy the file \KEIL\C51\LIB\STARTUP.A51 into your project folder and
add this file to your µVision2 project. In this copy of the STARTUP.A51 the
statement CSEG AT 0 must be replaced with CSEG AT 8000H.

206 Chapter 11. Using Monitor-51

11

Monitor-51 Configuration
The Monitor-51 can be adapted to different hardware configurations using the
INSTALL batch file in the folder \KEIL\C51\MON51. This utility is invoked
from a DOS command prompt and has the following command line syntax:

INSTALL serialtype [xdatastart [codestart [BANK][PROMCHECK]]]

The parameters of INSTALL.BAT are explained in the following.

serialtype defines the I/O routines used for the serial interface as explained in the
table below.

Serial
Type

Serial
Interface

Clock
Source

Baud Rate CPU
Clock

Processors

0 0 Timer 1 9600 bps 11,059 MHz all 8051 variants
1 0 Int. Baudrate

generator
9600 bps 12,000 MHz 80515(A),

80517(A)
2 0 Timer 2 9600 bps 12,000 MHz 8052 and

compatibles
3 1 Int. Baudrate

generator
9600 bps 12,000 MHz 80517(A)

4 0 Timer 2 9600 bps 12,000 MHz Dallas 80C320
/520/530

5 1 Timer 2 9600 bps 12,000 MHz Dallas 80C320
/520/530

6 ext. UART
16450/16550

Ext. Crystal
3,686400 MHz

9600 bps don’t care All

7 0 Timer 1 Self adjusting don’t care All
8 0 Timer 2 Self adjusting don’t care 8052 and

compatibles
9 0 Int. Baudrate

generator
Self adjusting don’t care 80515A, C505C

C515C,80517(A)
10 1 Int. Baudrate

generator
Self adjusting don’t care 80517(A)

11 0 Timer2 Self adjusting don’t care Dallas 80C320
/520/530

12 1 Timer 2 Self adjusting don’t care Dallas 80C320
/520/530

xdatastart specifies the page number of the xdata memory area used by Monitor-
51. The argument is a HEX value between 0 and FF. The default value is FF.
Example: when xdatastart is FF, the memory area from X:0xFF00 to X:0xFFFF
is used by Monitor-51 for internal variables and cannot be used by the user

Getting Started and Creating Applications 207

 11

application. This memory area needs to be von-Neumann RAM that can be
accessed from code and xdata space.

codestart specifies the page number of the code memory area for the Monitor-51
program code. The Monitor code requires typically 4 … 5 KBytes. The
argument is a HEX value between 0 and F0. The default value is 0.

The option BANK creates a Monitor-51 version for a code banked target system.
The file MON_BANK.A51 defines the hardware configuration of the banking
hardware. See section below for further information about hardware
configurations with code banking.

If the Monitor is created with the option PROMCHECK, the Monitor-51 checks
on CPU reset if an EPROM or a RAM is present at code address 0. If an
EPROM is detected, a JMP 0 instruction is executed that starts the code in the
EPROM. PROMCHECK should be specified if the Monitor-51 code remains
in the target system after the application has been programmed into an EPROM.

Example
INSTALL 8 7F 0

Creates a Monitor-51 version with self-adjusting baudrate that uses Timer 2 as
the baudrate generator. The xdata space for internal Monitor-51 variables is
between X:0x7F00 .. X:0x7FFF. The Monitor-51 code starts at address
C:0x0000. This batch file creates the file MON51.HEX that can be burn into an
EPROM.

NOTE
The file \KEIL\C51\MON51\MON51.PDF contains detailed information about
the Monitor-51 configuration files and hardware requirements.

208 Chapter 11. Using Monitor-51

11

Troubleshooting
If the Monitor-51 does not start correctly it is typically a problem of Monitor
code and data locations or the initialization of the serial interface.

If the Monitor-51 stops working or behaves strange during debugging of your
application, your application is most likely overwriting the user application
program. This might happen when the user application makes xdata write
accesses to the program code locations. Code and xdata memory must be non-
overlapping areas, since the Monitor-51 requires von Neumann wired code
space, which means that code and xdata space are physically the same memory
area. You should therefore check the XDATA and CODE MEMORY
MAPPING that is listed in the Linker MAP (*.M51) file and verify that code and
xdata space are not overlapping.

If the Monitor-51 does not single step CPU instructions or if you cannot read or
write SFR data locations the Monitor-51 xdata memory area cannot be accessed
from code space. The Monitor-51 data memory must be also von Neumann
wired xdata/code space.

During operation the Monitor might report the following errors:

Error Text Description

CONNECTION TO
TARGET SYSTEM
LOST

µVision2 has lost the serial connection to the Monitor program. This error
might occur because your program re-initializes the serial interface used by
Monitor-51. This error also occurs when you single step in the serial I/O
routines of your application.

NO CODE MEMORY
AT ADDRESS xxxx

You try to download code into ROM space or non-existing memory. The
code memory must be von Neumann wired xdata/code RAM.

CANNOT WRITE
INTERRUPT
VECTOR

The Monitor program cannot install the interrupt vectors for the Serial
interface. This error occurs when the code memory at address 0 cannot be
accessed. Most likely this space is not von Neumann wired.

Getting Started and Creating Applications 209

 11

Debugging with Monitor-51
The HELLO and MEASURE examples that are described in “Chapter 7. Sample
Programs” on page 149 are prepared for running on the Keil MCB517 test board.

To test the application with Monitor-51, select
Monitor-51 as target and build the project.

 Then you may start the debug session. The µVision2 debugger connects
to the MCB517 board, downloads the monitor and the application
program. In case of communication problems a dialog box opens that
displays further options and instructions.

Monitor-51 supports most µVision2 debugger features. You may single
step through code, set breakpoints and run your application. Variables can
be viewed with the standard debugger features. For information about
“µVision2 Restrictions when using Monitor-” refer to page 202.

 The Keil Monitor-51 allows you to share the serial interface that is used
for Monitor communication with user I/O. The Serial Window #1 shows
the printf and putchar output. Disable the option Monitor Driver
Settings – Serial Interrupt to enter characters that are sent to the user
program.

NOTES
It is important that you skip the initialization of the serial interface in the
user application, since the Monitor performs the UART setup. You may
use conditional compilation as shown in our program examples. Also it is
impossible to single step through putchar or getkey I/O functions.

 If the option Monitor Driver Settings – Serial Interrupt is enabled, you
may stop program execution with Halt command from the Debug menu or
the toolbar or type ESC in Output Window – Command page. The
Monitor uses the serial interrupt to halt the user program. If the Monitor
cannot stop your program (because the user application has disabled
interrupts or so) a dialog box opens that displays further options and
instructions.

 The µVision2 Reset command sets the program counter to 0. However it
should be noted that peripherals and SFRs of the 8051 device are not set
into reset state. Therefore this command it is not identical with a
hardware reset of the CPU.

210 Chapter 11. Using Monitor-51

11

Getting Started and Creating Applications 211

 12

Chapter 12. Command Reference
This chapter briefly describes the commands and directives for the Keil 8051
development tools. Commands and directives are listed in a tabular format along
with a description.

NOTE
Underlined characters denote the abbreviation for the particular command or
directive.

µVision 2 Command Line Invocation
The µVision2 IDE can directly execute operations on a project when it is called
from a command line. The command line syntax is as follows:

UV2 ����command���� ����projectfile����

command is one of the following commands. If no command is specified
µVision2 opens the project file in interactive Build Mode.

projectfile is the name of a project file. µVision2 project files have the
extension .UV2. If no project file is specify, µVision2 opens the
last project file used.

Command Description

-b Build the project and exit after the build process is complete.

-d Start µVision2 Debugging Mode. You can use this command together with a
Debug Initialization File to execute automated test procedures. µVision2 will
exit after debugging is completed with the EXIT command or stop debug session.
Example:
 UV2 -d PROJECT1.UV2

-r Re-translate the project and exit after the build process is complete.

-t targetname Open the project and set the specified target as current target. This option can
be used in combination with other µVision2 commands. Example:
 UV2 -b PROJECT1.UV2 –t"Monitor51"
builds the target “C167CR Board” as defined in the PROJECT1.UV2 file. If the –t
command option is not given µVision2 uses the target which was set as current
target in the last project session.

-o outputfile copy output of the Output Window – Build page to the specified file. Example:
 UV2 -r PROJECT1.UV2 –o"listmake.prn"

212 Chapter 12. Command Reference

12

A51 / A251 Macro Assembler Directives
Invocation: A51 sourcefile �directives�

A251 @commandfile

sourcefile is the name of an assembler source file.

commandfile is the name of a file which contains a complete command line
for the assembler including a sourcefile and directives.

directives are control parameters described in the following table.

A51 / A251 Controls Meaning

CASE ‡ Enables case sensitive symbol names.

DATE(date) Places date string in header (9 characters maximum).

DEBUG Includes debugging symbol information in the object file.

ERRORPRINT�(filename)� Outputs error messages to filename.

INCLUDE(filename) Includes the contents of filename in the assembly.

MACRO Enables standard macro processing.

MODBIN ‡ Selects 251 binary mode (default).

MODSRC ‡ Selects 251 source mode.

MPL Enables Intel-style macro processing.

NOAMAKE Excludes AutoMAKE information from the object file.

NOCOND Excludes unassembled conditional assembly code from the listing
file.

NOGEN Disables macro expansions in the listing file.

NOLINES Excludes line number information from the object file.

NOLIST Excludes the assembler source code from the listing file.

NOMACRO Disables standard macro processing.

NOMOD251 ‡ Disables enhanced 251 instruction set.

NOMOD51 † Disables predefined 8051-specific special function registers.

NOSYMBOLS Excludes the symbol table from the listing file.

NOSYMLIST Excludes symbol definitions from the listing file.

OBJECT�(filename)�,
NOOBJECT

Enables or disables object file output. The object file is saved as
filename if specified.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing file.

PRINT�(filename)�,
NOPRINT

Enables or disables listing file output. The listing file is saved as
filename if specified.

REGISTERBANK(num,
…), NOREGISTERBANK

Indicates that one or more registerbanks are used or indicates that
no register banks are used.

RESET (symbol, …) Assigns a value of 0000h to the specified symbols.

SET (symbol, …) Assigns a value of 0FFFFh to the specified symbols.

Getting Started and Creating Applications 213

 12

A51 / A251 Controls Meaning

TITLE(title) Includes title in the listing file header.

XREF Includes a symbol cross reference listing in the listing file.
† These controls are available only in the A51 macro assembler.
‡ These controls are available only in A251 macro assembler.

C51/C251 Compiler
Invocation: C51 sourcefile �directives�

C251 sourcefile �directives�

C51 @commandfile

C251 @commandfile

where

sourcefile is the name of a C source file.

commandfile is the name of a file which contains a complete command line
for the compiler including a sourcefile and directives. You
may use a command file to make compiling a source file easier
or when you have more directives than fit on the command line.

directives are control parameters which are described in the following
table.

C51 / C251 Controls Meaning

CODE Includes an assembly listing in the listing file.

COMPACT Selects the COMPACT memory model.

DEBUG Includes debugging information in the object file.

DEFINE Defines preprocessor names on the command line.

FLOATFUZZY Specifies the number of bits rounded during floating-point
comparisons.

HOLD(d,n,x) ‡ Specifies size limits for variables placed in data (d),
near (n), and xdata (x) memory areas.

INTERVAL † Specifies the interval for interrupt vectors.

INTR2 ‡ Saves upper program counter byte and PSW1 in interrupt
functions.

INTVECTOR(n), NOINTVECTOR Specifies offset for interrupt table, using n, or excludes
interrupt vectors from the object file.

LARGE Selects the LARGE memory model.

LISTINCLUDE Includes the contents of include files in the listing file.

214 Chapter 12. Command Reference

12

C51 / C251 Controls Meaning

MAXARGS(n) Specifies the number of bytes reserved for variable length
argument lists.

MOD517 † Enables support for the additional hardware of the
Siemens 80C517 and its derivatives.

MODBIN ‡ Generates 251 binary mode code.

MODDP2 † Enables support for the additional hardware of Dallas
Semiconductor 80C320/520/530 and the AMD 80C521.

MODSRC ‡ Generates 251 source mode code.

NOAMAKE Excludes AutoMAKE information from the object file.

NOAREGS † Disables absolute register addressing using ARn
instructions.

NOCOND Excludes skipped conditional code from the listing file.

NOEXTEND Disables 8051/251 extensions and processes only ANSI C
constructs.

NOINTPROMOTE † Disables ANSI integer promotion rules.

NOREGPARMS † Disables passing parameters in registers.

OBJECT�(filename)�, NOOBJECT Enables or disables object file output. The object file is
saved as filename if specified.

OBJECTEXTEND † Includes additional variable type information in the object
file.

OPTIMIZE Specifies the level of optimization performed by the
compiler.

ORDER Locates variables in memory in the same order in which
they are declared in the source file.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing
file.

PARM51 ‡ Uses parameter passing conventions of the C51 Compiler.

PREPRINT�(filename)� Produces a preprocessor listing file with all macros
expanded. The preprocessor listing file is saved as
filename if specified.

PRINT�(filename)�, NOPRINT Enables or disables listing file output. The listing file is
saved as filename if specified.

REGFILE(filename) Specifies the name of the generated file to contain register
usage information.

REGISTERBANK † Selects the register bank to use functions in the source
file.

ROM({SMALL|COMPACT|LARGE}) Controls generation of AJMP and ACALL instructions.
SMALL Selects the SMALL memory model.

SRC Creates an assembly source file instead of an object file.

SYMBOLS Includes a list of the symbols used in the listing file.

WARNINGLEVEL(n) Controls the types and severity of warnings generated.
† These controls are available only in the C51 Compiler.

‡ These controls are available only in C251 compiler.

Getting Started and Creating Applications 215

 12

L51/BL51 Linker/Locator
Invocation: BL51 inputlist �TO outputfile� �directives�

L51 inputlist �TO outputfile� �directives�

BL51 @commandfile

L51 @commandfile

where

inputlist is a list of the object files and libraries, separated by commas,
that the linker includes in the final 8051 application.

outputfile is the name of the absolute object module the linker creates.

commandfile is the name of a file which contains a complete command line
for the linker/locator including an inputlist and directives.
You may use a command file to make linking your application
easier or when you have more input files or more directives than
fit on the command line.

directives are control parameters which are described in the following
table.

BL51 Controls Meaning

BANKAREA ‡ Specifies the address range where the code banks are located.

BANKx ‡ Specifies the starting address, segments, and object modules for code
banks 0 to 31.

BIT Locates and orders BIT segments.
CODE Locates and orders CODE segments.
COMMON ‡ Specifies the starting address, segments, and object modules to place

in the common bank. This directive is essentially the same as the
CODE directive.

DATA Locates and orders DATA segments.
IDATA Locates and orders IDATA segments.
IXREF Includes a cross reference report in the listing file.

NAME Specifies a module name for the object file.

NOAMAKE Excludes AutoMAKE information from the object file.

NODEBUGLINES Excludes line number information from the object file.

NODEBUGPUBLICS Excludes public symbol information from the object file.

NODEBUGSYMBOLS Excludes local symbol information from the object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file.

NOMAP Excludes memory map information from the listing file.

NOOVERLAY Prevents overlaying or overlapping local BIT and DATA segments.

216 Chapter 12. Command Reference

12

BL51 Controls Meaning

NOPUBLICS Excludes public symbol information from the listing file.

NOSYMBOLS Excludes local symbol information from the listing file.

OVERLAY Directs the linker to overlay local data & bit segments and lets you
change references between segments.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing file.

PDATA Specifies the starting address for PDATA segments.
PRECEDE Locates and orders segments that should precede all others in the

internal data memory.
PRINT Specifies the name of the listing file.

RAMSIZE Specifies the size of the on-chip data memory.

REGFILE(filename) Specifies the name of the generated file to contain register usage
information.

RTX51 ‡ Includes support for the RTX-51 full real-time kernel.

RTX51TINY ‡ Includes support for the RTX-51 tiny real-time kernel.

STACK Locates and orders STACK segments.
XDATA Locates and orders XDATA segments.

‡ These controls are available only in the BL51 code banking linker/locator.

L251 Linker/Locator
Invocation: L251 inputlist �TO outputfile� �directives�

L251 @commandfile

where

inputlist is a list of the object files and libraries, separated by commas,
that the linker includes in the final 251 application.

outputfile is the name of the absolute object module the linker creates.

commandfile is the name of a file which contains a complete command line
for the linker/locator including an inputlist and directives.
You may use a command file to make linking your application
easier or when you have more input files or more directives than
fit on the command line.

directives are control parameters described in the following table.

 L251 Controls Meaning

ASSIGN Defines public symbols on the command line.

Getting Started and Creating Applications 217

 12

 L251 Controls Meaning

CLASSES Specifies a physical address range for segments in a memory class.

IXREF Includes a cross reference report in the listing file.

NAME Specifies a module name for the object file.

NOAMAKE Excludes AutoMAKE information from the object file.

NOCOMMENTS Excludes comment information from the listing file and the object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file and object file.

NOMAP Excludes memory map information from the listing file.

NOOVERLAY Prevents overlaying or overlapping local BIT and DATA segments.
NOPUBLICS Excludes public symbol information from the listing file and the object

file.
NOSYMBOLS Excludes local symbol information from the listing file.

NOTYPES Excludes type information from the listing file and the object file.

OBJECTCONTROLS Excludes specific debugging information from the object file.
Subcontrols must be specified in parentheses. See NOCOMMENTS,
NOLINES, NOPUBLICS, NOSYMBOLS, and PURGE.

OVERLAY Directs the linker to overlay local data & bit segments and lets you
change references between segments.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing file.

PRINT Specifies the name of the listing file.

PRINTCONTROLS Excludes specific debugging information from the listing file.
Subcontrols must be specified in parentheses. See NOCOMMENTS,
NOLINES, NOPUBLICS, NOSYMBOLS, and PURGE.

PURGE Excludes all debugging information from the listing file and the object
file.

RAMSIZE Specifies the size of the on-chip data memory.

REGFILE(filename) Specifies the name of the generated file to contain register usage
information.

RESERVE Reserves memory ranges and prevents the linker from using these
memory areas.

RTX251 Includes support for the RTX-251 full real-time kernel.

RTX251TINY Includes support for the RTX-251 tiny real-time kernel.

SEGMENTS Defines physical memory addresses and orders for specified segments.

SEGSIZE Specifies memory space used by a segment.

WARNINGLEVEL(n) Controls the types and severity of warnings generated.

218 Chapter 12. Command Reference

12

LIB51 / L251 Library Manager Commands
The LIB51 / LIB251 Library Manager lets you create and maintain library files
of your 8051 / 251 object modules. Invoke the library manager using the
following command:

LIB51 �command�
LIB251 @commandfile

command is one of the following commands. If no command is specified
LIB51 / LIB251 enters an interactive command mode.

commandfile is the name of a file which contains a complete command line
for the library manager. The command file includes a single
command that is executed by LIB51. You may use a command
file to generate a large library with at once.

LIB51 Command Description

ADD Adds an object module to the library file. For example,
 LIB51 ADD GOODCODE.OBJ TO MYLIB.LIB
adds the GOODCODE.OBJ object module to MYLIB.LIB.

CREATE Creates a new library file. For example,
 LIB251 CREATE MYLIB.LIB
creates a new library file named MYLIB.LIB.

DELETE Removes an object module from the library file. For example,
 LIB51 DELETE MYLIB.LIB (GOODCODE)
removes the GOODCODE module from MYLIB.LIB.

EXTRACT Extracts an object module from the library file. For example,
 LIB251 EXTRACT MYLIB.LIB (GOODCODE) TO GOOD.OBJ
copies the GOODCODE module to the object file GOOD.OBJ.

EXIT Exits the library manager interactive mode.

HELP Displays help information for the library manager.

LIST Lists the module and public symbol information stored in the library file.
For example,
 LIB251 LIST MYLIB.LIB TO MYLIB.LST PUBLICS
generates a listing file (named MYLIB.LST) that contains the module
names stored in the MYLIB.LIB library file. The PUBLICS directive
specifies that public symbols are also included in the listing.

REPLACE Replaces an existing object module to the library file. For example,
 LIB51 REPLACE GOODCODE.OBJ IN MYLIB.LIB
replaces the GOODCODE.OBJ object module in MYLIB.LIB. Note that
Replace will add GOODCODE.OBJ to the library if it does not exists.

Getting Started and Creating Applications 219

 12

LIB51 Command Description

TRANSFER Generates a complete new library and adds object modules. For example,
 LIB251 TRANSFER FILE1.OBJ, FILE2.OBJ TO MYLIB.LIB
deletes the existing library MYLIB.LIB, re-creates it and adds the object
modules FILE1.OBJ and FILE2.OBJ to that library.

OC51 Banked Object File Converter
Invocation: OC51 banked_file

where

banked_file is the name of a banked object file.

OH51 Object-Hex Converter
Invocation: OH51 absfile �HEXFILE(hexfile)�

where

absfile is the name of an absolute object file.

hexfile is the name of the Intel HEX file to create.

OH251 Object-Hex Converter
Invocation: OH251 absfile �HEXFILE(hexfile)� �{HEX|H386}�

�RANGE(start-end)�

where

absfile is the name of an absolute object file.

hexfile is the name of the HEX file to create.

HEX specifies that a standard Intel HEX file is created.

H386 specifies that an Intel HEX-386 file is created.

RANGE specifies the address range of data in the absfile to convert and
store in the HEX file. The default range is 0xFF0000 to
0xFFFFFF.

start specifies the starting address of the range. This address must be
entered in C hexadecimal notation, for example: 0xFF0000.

220 Chapter 12. Command Reference

12

end specifies the ending address of the range. This address must be entered
in C hexadecimal notation, for example: 0xFFFFFF.

Getting Started and Creating Applications 221

 12

222 Index

Index

$
$ system variable 113

*
*.OPT file .. 77
*.UV2 file .. 77

_
break system variable................... 113
_getkey library routine..................... 190
iip system variable 113
_RBYTE debug function 134,139
_RDOUBLE debug function............ 139
_RDOUBLEdebug function............. 134
_RDWORD debug function...... 134,139
_RFLOAT debug function........ 134,139
_RWORD debug function......... 134,139
TaskRunning debug function 134
_WBYTE debug function 134,140
_WDOUBLE debug function ... 134,140
_WDWORD debug function..... 134,140
_WFLOAT debug function....... 134,140
_WWORD debug function 134,140

µ
µVision2 debugger

Description................................... 15
µVision2 Debugger............................ 93
µVision2 IDE................................ 21,58

Command line parameters.......... 211
Debug Options 102
Description................................... 13
Menu commands 23
Options... 62
Shortcuts 23
Toolbars 23
Toolbox...................................... 101

A
A/D converter 195

Example program195
A51

Assembler kit................................17
A51 assembler

Description14
A51 macro assembler49

Commands..................................212
Directives....................................212

Access Break......................................97
Add command

library manager...........................218
Additional items, document

conventions..4
Advanced GDI15
alien..43
Analog/Digital converter195
ANSI C...147
asm ...42
Assembler Instructions95
Assembler kit......................................17
Assistance...12

B
Banked memory prefix123
Banking ..67
Binary constants111
Bit addresses122
BIT memory prefix...........................123
BL51 code banking

linker/locator51
Code Banking51
Common Area...............................52
Data Address Management...........51
Executing Functions in Other

Banks ...52
BL51 linker/locator

Description14
Bold capital text, use of........................4
Braces, use of4
break...131
Breakpoint Commands108
Breakpoints ..96

Access Break97
Conditional97

Getting Started and Creating Applications 223

Execution Break........................... 97
Build Process..................................... 83
Build Project...................................... 63

C
C startup code.................................. 197
C51 C compiler 32

Language Extensions 33
C51 compiler

Description................................... 14
Generic pointers........................... 37
Library routines............................ 45
Memory specific pointers 38
Typed pointers 38
Untyped pointers.......................... 37

C51 Compiler
Code Optimizations 43
Compact model 36
Data Types................................... 33
Debugging.................................... 45
Function Return Values 41
Interfacing to Assembly 42
Interfacing to PL/M-51 43
Interrupt Functions....................... 40
Large model 36
Memory Models........................... 35
Memory Types............................. 34
Parameter Passing........................ 40
Pointers .. 37
Real-Time Operating System

Support...................................... 41
Reentrant Functions 39
Register Optimizing 41
Small model 35

CA51
Compiler kit 16

can_bind_obj 175
can_def_obj 175
can_get_status.................................. 175
can_hw_init 175
can_read .. 175
can_receive...................................... 175
can_request...................................... 175
can_send .. 175
can_start .. 175
can_stop... 175
can_task_create 175

can_unbind_obj................................175
can_wait ...175
can_write..175
case ..131
Changes to the documentation10
Character constant escape

sequence..112
Character constants112
Choices, document conventions...........4
Code Banking67
Code Coverage.................................104
CODE memory prefix123
COM Port for Serial I/O128
Command Input from File................128
Command reference211

A51 macro assembler212
LIB51 / LIB251 library

manager218
Commands ...23

Edit...24
File ...23
Selecting text25

COMPACT35,36
Comparison chart17
Compiler kit16
conditional assembly..........................49
Conditional Break97
Configuration

CPU..197
tool options...................................66

Constant Expressions111
Constants..111

Binary...111
Character112
Decimal111
Floating-point112
HEX ...111
Octal ...111
String..113

constants in a code bank.....................68
continue..131
Control Directives

#pragma..46
Copy Tool Settings85
Correct syntax errors..........................63
Counter Clock Inputs127
Counters ...189

224 Index

Courier typeface, use of 4
CPU driver symbols......................... 114
CPU initialization 197
CPU pin register See VTREG
CPU Registers.................................. 100
CPU Simulation 94
Create a Library 85
Create a Project File 58
Create command

library manager 218
Create HEX File 63
Custom Translator.............................. 90

D
D/A converter 194

Example program....................... 194
DATA memory prefix...................... 123
Data Types... 81
Debug Commands....................... 28,107

Memory...................................... 108
Program Execution..................... 108

Debug Commands from File 128
Debug functions........................ 131,147

_RBYTE 134,139
_RDOUBLE........................ 134,139
_RDWORD......................... 134,139
_RFLOAT 139
_RFOAT 134
_RWORD............................ 134,139
TaskRunning 134,139
_WBYTE 134,140
_WDOUBLE....................... 134,140
_WDWORD........................ 134,140
_WFLOAT.......................... 134,140
_WWORD 134,140
exec 134,135
getdbl 134,135
getint 134,135
getlong................................. 134,135
memset 134,135
printf.................................... 134,136
rand 134,136
rwatch.................................. 134,138
swatch 134,137
twatch.................................. 134,137
wwatch 134,138

Debug Menu 28

Debug Mode.......................................94
Debug Output

protocol file129
Debugger ..93
Debugger capabilities.......................126
Debugging with Monitor-51.............209
Decimal constants111
Delete command

library manager...........................218
Developer’s kit16
Development cycle13
Development tools..............................21
Device Database.................................84
Digital/Analog converter194

Example program194
Directives

A51 macro assembler212
LIB51 / LIB251 library

manager218
Directory structure..............................20
Disassembly Window.........................95
Displayed text, document

conventions..4
DK51

Developer’s kit16
do ...131
Document conventions4
Documentation changes......................10
Double brackets, use of4

E
EA register187
Easy-Case...75
Edit Menu...24
Editor Commands...............................24
Ellipses, use of4
Ellipses, vertical, use of........................4
else ...131
endasm ...42
Escape sequence...............................112
Evaluation board199
Evaluation kit11
Evaluation users11
Example program

A/D converter195
D/A converter194
Parallel port I/O..........................188

Getting Started and Creating Applications 225

Serial interface 190
Timers/Counters......................... 189
Watchdog timer 193

Examples of expressions.................. 124
Exclude from Link Run 65
exec debug function.................. 134,135
Execution Break 97
Exit command

library manager 218
Experienced users.............................. 11
Expression components

Bit addresses 110,122
Constants............................. 110,111
CPU driver symbols................... 114
Line numbers 110,122
Memory spaces 123
Operators 110,123
Program variables 110,118
SFRs... 114
Special function registers........... 114
Symbols 110,118
System variables 110,113
Type specifications 110,123
Variables............................. 110,118
VTREGs 114

Expression examples 124
Expressions...................................... 110
Extract command

library manager 218

F
Feature check list 17
File Attributes.................................... 65
File Code for Tool Parameters 71
File Commands.................................. 23

Debug... 28
Project.. 27

File Extensions 92
File Menu .. 23
File specific Options................ 65,66,87
Filename, document conventions......... 4
Files Groups 64
Find in Files....................................... 69
Floating-point constants................... 112
Folder for Listing Files 84
Folder for Object Files 84
Folder structure.................................. 20

FR51
Real-time operating system17

Fully qualified symbols....................119
Function classes

Predefined functions...................133
Signal functions..........................133
User functions133

Function Classes133
Functions

µVision2 Debug Functions.........131
Classes..133
Creating......................................131
Invoking133
Predefined debug functions134
Signal ...143
User ..141

G
General commands...........................109
getdbl debug function................134,135
getint debug function134,135
getlong debug function..............134,135
Getting help..12
Getting started immediately10
Global Register Optimization79
goto ..131
Group Attributes65
Group specific Options

for Groups65,66,87

H
Hardware requirements19
Help ...12
Help command

library manager218
Help Menu ...31
HEX constants111
HEX File ..63

I
I/O Port simulation...........................126
I/O ports116,187
IBPSTACK......................................197
IBPSTACKTOP198
IDATA memory prefix123

226 Index

IDATALEN 197
Idle Mode... 196
IE register .. 187
if 131
Illegal Memory Accesses 128
Import µVision1 Projects................... 82
Include specific Library Modules

.. 89
Initializing memory.......................... 197
Input from File 128
Installation details 19
Installing the software........................ 19
Intel PL/M-51 91
interrupt ... 40
Interrupt

Addresses 185
Numbers..................................... 185

Interrupt enable registers 187
Interrupt functions............................ 185
Interrupt simulation.......................... 127
Introduction ... 9
IP register... 187
isr_recv_message 174
isr_send_message............................. 174
isr_send_signal 174
Italicized text, use of............................ 4
itrace system variable....................... 113

K
Kernel Aware Debugging 130,180
Kernel Awareness

for Real-Time Operating
Systems 180

Key names, document
conventions 4

Key Sequence for Tool
Parameters....................................... 71

Keyboard Shortcuts.......................... 129
Kit comparison................................... 17

L
LARGE... 35,36
Last minute changes........................... 10
Latch Devices

simulation of ~ 127
LIB51 / L251 library manager

Commands..................................218
LIB51 library manager54

Description14
Library...88,89
library manager

Add command218
Create command.........................218
Delete command.........................218
Exit command.............................218
Extract command........................218
Help command............................218
List command218
Replace command.......................218
Transfer command......................219

Line numbers....................................122
List command

library manager...........................218
Listing Files..84
Literal ...121
Literal symbols.................................121
Load Memory Contents....................129
Locate Segments66,86

M
Macros

Macro Processing Language.........49
MPL..49
Standard macros49

Manual topics10
Memory Banking................................67
Memory Map....................................105
Memory Model..............................62,78
Memory space

BIT ...123
CODE...123
Code Banks.................................123
DATA...123
IDATA123
XDATA......................................123

Memory spaces.................................123
Memory Type................................62,78
Memory Window100
memset debug function..............134,135
Menu ..23

Debug ...28
Edit ...24
File..23

Getting Started and Creating Applications 227

Help ... 31
Peripherals 29
Project.. 27
SVCS ... 30
Tools .. 29
View... 26
Window 30

Microsoft SourceSafe 76
MKS Source Integrity........................ 76
Module names 118
Modules in a code bank..................... 67
Monitor driver 201
Monitor-51 199

Configuration............................. 206
Debug Example Programs 209
Description................................... 15
Problems 208
Serial transmission line 201

MPL... 49

N
Naming conventions for symbols 118
New Project 58
New users .. 11
Non-qualified symbols..................... 120
NOOVERLAY 51
NOREGPARMS........................... 40,42

O
Object Files 84
OBJECTEXTEND 45
OC51 Banked Object File

Converter .. 55
Octal constants................................. 111
OH51 Object-Hex Converter............. 55
oi_reset_int_mask............................ 174
oi_set_int_mask............................... 174
OMF51 ... 43,45
Omitted text, document

conventions....................................... 4
On-chip peripherals 183
Operators ... 123
Optimum Code 78
Optional items, document

conventions....................................... 4
Options

for Files65,66,87
for Groups65,66,87

os_attach_interrupt...........................174
os_check_mailbox............................174
os_check_mailboxes174
os_check_pool174
os_check_semaphore174
os_check_semaphores......................174
os_check_task174
os_check_tasks.................................175
os_clear_signal.................................174
os_create_pool174
os_create_task..................................174
os_delete_task..................................174
os_detach_interrupt..........................174
os_disable_isr174
os_enable_isr174
os_free_block...................................174
os_get_block174
os_send_message174
os_send_signal174
os_send_token..................................174
os_set_slice174
os_wait ...174
os-wait..171
Output Window..................................63
OVERLAY ..51

P
Parallel port......................................187

Example program188
Parameters for external tools..............71
Part numbers16
PBPSTACK198
PBPSTACKTOP..............................198
PC-Lint...74
PDATALEN197
PDATASTART197
Performance Analyzer......................103
Peripherals183
Peripherals Menu29
PK51

Professional developer’s kit16
PL/M-51...91
Port I/O ..187
Ports ...116
Power Down Mode196

228 Index

Power reduction modes.................... 196
PPAGE .. 198
PPAGEENABLE............................. 198
Predefined debug functions.............. 134

_RBYTE 134,139
_RDOUBLE........................ 134,139
_RDWORD......................... 134,139
_RFLOAT 139
_RFOAT 134
_RWORD............................ 134,139
TaskRunning 134,139
_WBYTE 134,140
_WDOUBLE....................... 134,140
_WDWORD........................ 134,140
_WFLOAT.......................... 134,140
_WWORD 134,140
exec 134,135
getdbl 134,135
getint 134,135
getlong................................. 134,135
memset 134,135
printf.................................... 134,136
rand 134,136
rwatch.................................. 134,138
swatch 134,137
twatch.................................. 134,137
wwatch 134,138

Preemptive Task Switching 172
Preset I/O Ports or Memory............. 129
Printed text, document

conventions 4
printf debug function................. 134,136
printf library routine......................... 190
Product comparison 17
Product link.. 16
Product overview............................... 16
Production kit 11
Professional developer’s kit............... 16
Program counter system variable 113
Project Commands............................. 27
Project Menu...................................... 27
Project Targets................................... 64
Project Window 65
Protocol Debug Output 129
putchar library routine 190
PVCS from Intersolv 76

Q
Qualified symbols.............................119

R
radix system variable........................113
rand debug function...................134,136
Read only attribute65
Real-time operating system17
reentrant ...39
Register banks184,186
Registers

EA...187
IE ..187
IP ..187

REGPARMS40
Replace command

library manager...........................218
Requesting assistance12
Requirements......................................19
Round-Robin170
RS-232 ports117,190
RTX51..169

Real-time operating system...........17
Routines......................................174
Status Information181
Task List181
Technical Data............................173

RTX-51 Application Example
TRAFFIC....................................176

RTX51 real-time operating
system

Description15
RTX51 Tiny

Introduction169
Run Program99
rwatch debug function134,138

S
Sans serif typeface, use of4
Saving power....................................196
scanf library routine190
segments in a code bank.....................68
Selecting text25
Serial I/O to PC COM Port128
Serial interface190

Getting Started and Creating Applications 229

Example program....................... 190
Serial ports....................................... 117
Serial Window................................. 103
SETUP program 19
SFRs .. 114
Siemens Easy-Case............................ 75
Signal functions 143
Simlation of complex Hardware 126
Simulating I/O ports 116
Simulating serial ports 117
Simulation.. 94
Simulator ... 93
Single Step Program.......................... 99
Single-board computers................... 199
SMALL .. 35,36
Software development cycle 13
Software requirements 19
Software Version Control

Systems... 76
Source Browser 69
Source Integrity from MKS 76
SourceSafe from Microsoft................ 76
Special function registers................. 114
Special Function Registers 183
Specify a Code Bank for a

Module.. 67
SRC ... 42
Start µVision2 58
Start Debugging................................. 94
Start External Tools........................... 83
Startup code..................................... 197
STARTUP.A51 60
states system variable 113
String constants 113
SVCS Menu....................................... 30
swatch debug function 134,137
switch... 131
Symbol expressions 118
Symbols

CPU driver................................. 114
Fully qualified............................ 119
Literals 121
Module names............................ 118
Naming conventions 118
Non-qualified............................. 120
Qualified names 119
SFRs... 114

Special function registers114
System variables.........................113
VTREGs.....................................114

Symbols Window.............................106
Syntax errors63
System variables113

$ 113
break.......................................113
cycles..113
itrace...113
Program counter113
radix ...113

T
Target hardware199
Target Tool Settings...........................85
Task Information

for RTX51..................................181
Task status..181

of RTX51 functions....................181
TaskRunning debug function 139
Technical support...............................12
Test RTX Applications178
Timer 0...189
Timer 1...189
Timer 2...189
Timer/Counter Clock Inputs127
Timers ..189
Timers/Counters

Example program189
Tool Information................................92
tool options ..66
Tools Menu..............................29,72,76
Tools Parameters

Key Sequence...............................71
Topics ..10
Transfer command

library manager219
Translate asm/endasm sections89
twatch debug function134,137
Type specifications123
Types of users11

U
UART ..103
User functions141

230 Index

Users .. 11
using... 40
Using a Software Version

Control System................. 30,65,72,76
Using monitor-51............................. 199
Utilities .. 69

V
Variable expressions 118
Variable values 99
Variables, document conventions 4
Version Control Systems 76
Vertical bar, use of............................... 4
Vertical ellipses, use of........................ 4
View memory contents 100
View Menu .. 26
VTREGs .. 114

W
Wait for Signal172
Wait for Timeout..............................171
Watch Window...................................99
Watchdog timer193

Example program193
while...131
Window Menu....................................30
Working with a Software Team..........76
Write Debug Output to file...............129
Write Optimum Code78
wwatch debug function..............134,138

X
XBPSTACK.....................................198
XBPSTACKTOP198
XDATA memory prefix123
XDATALEN....................................197
XDATASTART197

	Preface
	Document Conventions
	Contents
	Chapter 1. Introduction
	Manual Topics
	Changes to the Documentation
	Evaluation Kits and Production Kits
	Types of Users
	Requesting Assistance
	Software Development Cycle
	Product Overview

	Chapter 2. Installation
	System Requirements
	Installation Details
	Folder Structure

	Chapter 3. Development Tools
	µVision2 Integrated Development Environment
	C51 Optimizing C Cross Compiler
	A51 Macro Assembler
	BL51 Code Banking Linker/Locator
	LIB51 Library Manager
	OC51 Banked Object File Converter
	OH51 Object˚Hex Converter

	Chapter 4. Creating Applications
	Creating Projects
	Project Targets and File Groups
	Overview of Configuration Dialogs
	Code Banking
	µVision2 Utilities
	Writing Optimum Code
	Tips and Tricks

	Chapter 5. Testing Programs
	µVision2 Debugger
	Debug Commands
	Expressions
	Tips and Tricks

	Chapter 6. µVision2 Debug Functions
	Creating Functions
	Invoking Functions
	Function Classes
	Differences Between Debug Functions and C
	Differences Between dScope and the µVision2 Debugger

	Chapter 7. Sample Programs
	HELLO: Your First 8051 C Program
	MEASURE: A Remote Measurement System

	Chapter 8. RTX-51 Real-Time Operating System
	Introduction
	RTX51 Technical Data
	Overview of RTX51 Routines
	TRAFFIC: RTX-51 Tiny Example Program
	RTX Kernel Aware Debugging

	Chapter 9. Using On-chip Peripherals
	Special Function Registers
	Register Banks
	Interrupt Service Routines
	Interrupt Enable Registers
	Parallel Port I/O
	Timers/Counters
	Serial Interface
	Watchdog Timer
	D/A Converter
	A/D Converter
	Power Reduction Modes

	Chapter 10. CPU and C Startup Code
	Chapter 11. Using Monitor 51
	Caveats
	Hardware and Software Requirements
	Serial Transmission Line
	µVision2 Monitor Driver
	µVision2 Restrictions when using Monitor-51
	Tool Configuration when Using Monitor-51
	Monitor-51 Configuration
	Troubleshooting
	Debugging with Monitor-51

	Chapter 12. Command Reference
	µVision 2 Command Line Invocation
	A51 / A251 Macro Assembler Directives
	C51/C251 Compiler
	LIB51 / L251 Library Manager Commands
	OC51 Banked Object File Converter

	Index

